Pritzker School of Molecular Engineering

pme.uchicago.edu (http://pme.uchicago.edu/)

Dean

• Matthew Tirrell

Academic and Student Affairs

• Paul Nealey, Brady W. Dougan Professor in Molecular Engineering and Deputy Director for Education and Outreach
• Rovana Popoff, Senior Associate Dean and Dean of Students
• David Taylor, Associate Dean of Students
• Lisa Abston, Assistant Dean of Students
• Pete Segall, Program Coordinator

Faculty

• Chibueze Amanchukwu (https://amanchukwu.uchicago.edu/)
• David Awschalom (http://ime.uchicago.edu/awschalonlab/people/david_awschalom/)
• Hannes Bernien (https://ime.uchicago.edu/bernien_lab/hannes_bernien/)
• Junhong Chen (https://pme.uchicago.edu/group/junhong-chen-research-group/)
• Huanhuan Chen (https://chen.uchicago.edu/)
• Nicolas Chevrier (https://ime.uchicago.edu/chevrier_group/people/nicolas_chevrier/)
• Andrew Cleland (http://ime.uchicago.edu/andrew_cleland/)
• Aashish Clerk (https://ime.uchicago.edu/esser_kahn_group/people/aaron_esser_kahn/)
• Andrew Ferguson (https://ime.uchicago.edu/andrew_ferguson/)
• Giulia Galli (https://ime.uchicago.edu/galli_group/people/giulia_galli/)
• Margaret Gardel (http://squishycell.uchicago.edu/)
• Supratik Guha (http://ime.uchicago.edu/guha_lab/people/supratik_guha/)
• Alex High (https://ime.uchicago.edu/alex_high/)
• Jun Huang (http://ime.uchicago.edu/huang_group/people/jun_huang/)
• Jeffrey Hubbell (http://ime.uchicago.edu/hubbell_lab/people/jeffrey_hubbell/)
• Liang Jiang (https://ime.uchicago.edu/group/jiang-group/)
• Nancy Kawalek (http://ime.uchicago.edu/nancy_kawalek/)
• Chong Liu (https://ime.uchicago.edu/liu_group/people/chong_liu/)
• Peter Maurer (https://ime.uchicago.edu/maurer_group/peter_maurer/)
• Juan Mendoza (https://ime.uchicago.edu/juan_mendoza/)
• Mark Mimee (https://voices.uchicago.edu/mimeelab/)
• Cathryn Nagler (https://naglerlab.uchicago.edu/)
• Paul Nealey (http://ime.uchicago.edu/nealey_lab/people/paul_nealey/)
• Jiwoong Park (https://ime.uchicago.edu/jiwoong_park/)
• Shrayesh Patel (https://ime.uchicago.edu/patel_group/people/shrayesh_patel/)
• Rama Ranganathan (https://ime.uchicago.edu/rama_ranganathan/)
• Samantha Riesenfeld
• Stuart Rowan (https://ime.uchicago.edu/rowan_group/people/stuart_rowan/)
• David Schuster (http://schusterlab.uchicago.edu/)
• James Skinner (https://ime.uchicago.edu/skinner_group/people/james_skinner/)
• Allison Squires (https://pme.uchicago.edu/group/squires-group/)
• Melody Swartz (https://ime.uchicago.edu/swartz_group/people/melody_swartz/)
• Savas Tay (https://ime.uchicago.edu/savas_tay/)
• Matthew Tirrell (http://ime.uchicago.edu/tirrell_lab/people/matthew_tirrell/)
• Sihong Wang (https://ime.uchicago.edu/wang_group/sihong_wang/)
• Joshua Weinstein (https://wlab.bio/)
• Shuolong Yang (https://ime.uchicago.edu/shuolong_yang/)
• Tian Zhong (https://ime.uchicago.edu/tian_zhong/)

The Pritzker School of Molecular Engineering (PME) is at the forefront of an emerging field. This exciting venture prepares students to combine problem-solving skills with broad expertise in the fundamental sciences to build useful systems from the molecular level up. The PME’s approach to engineering research and education emphasizes analytical and disciplinary integration, rather than the traditional separation of engineering disciplines. As a result, students from diverse scientific backgrounds may collaborate on research projects that involve the incorporation of synthetic molecular building blocks, including electronic, optical, mechanical, chemical, and biological components, into functional systems that will impact technologies from advanced medical therapies to quantum computing.

Established in 2011 by the University of Chicago, in partnership with Argonne National Laboratory (http://www.anl.gov/), the PME brings together a growing team of world-class researchers from diverse science and engineering disciplines who take a hands-on approach to mentoring students and cultivating relationships with industrial and academic partners - resulting in exciting discoveries, new technologies, and innovative solutions.

PME researchers conduct much of their work at the William Eckhart Research Center, one of the largest and most modern accessible nanofabrication facilities in the Midwest, which includes cutting-edge clean rooms, molecular imaging facilities, biomolecular research labs, and a wet-lab for nanofabrication and other materials work. Additionally, Argonne National Laboratory brings important resources to the endeavor, including the Advanced Photon Source (http://www.aps.anl.gov/), the Argonne Leadership Computing Facility (http://www.alcf.anl.gov/) and the Center for Nanoscale Materials (http://nano.anl.gov/).

HOW TO APPLY

The Pritzker School of Molecular Engineering welcomes students with diverse academic backgrounds, including all fields of physical, biological and computational sciences, who possess the motivation and background to transcend disciplinary boundaries and pursue research in a bold, problem-focused way. Applicants to the Ph.D. program should have a bachelor’s degree in a STEM field and should provide scores for the GRE general test the TOEFL and IELTS (if not a native English speaker) (https://internationalaffairs.uchicago.edu/page/english-language-requirements/). The relevant GRE subject test scores will be considered if submitted, and could strengthen an application, but are not strictly required. Please submit a personal statement of research interests, three recommendation letters, and transcript(s) from all undergraduate and graduate institutions, along with payment of the $90 application fee. Applications (https://apply-pme.uchicago.edu/apply/) will be due in December 2020/January 2021.

DEGREE REQUIREMENTS

Graduate students entering the PME Ph.D. program are expected to fulfill a set of course requirements including 3 core courses, 4 in-depth courses in the area relevant to their research field of choice, and 2 broad elective courses. The core and in-depth courses are selected from a portfolio of graduate-level courses, in conjunction with the faculty advisor. These courses are offered by the PME, sister departments (Physics, Chemistry, Biophysics, Computer Science, and Biological Sciences), or are developed specifically for PME students. The broad electives are to provide students with the opportunity to acquire skills in leadership, communication, technology development and product design. The hallmark of PME’s Ph.D. program is a highly customized curriculum tailored to each individual student’s needs and inspirations.

The vibrant and diverse research activities pursued by PME faculty members offer students a broad range of research opportunities. First-year students explore these opportunities through a required first-year colloquium, a series of faculty research talks during autumn quarter, and by establishing relationships with individual faculty members. As a highly interdisciplinary environment, there are many opportunities to work with multiple faculty members within the PME and/or with faculty in other partner divisions at the University of Chicago and Argonne National Laboratory (see our website (https://pme.uchicago.edu/about/partners/) for a full list). Every effort will be made to facilitate the matching of each student with one of their preferred advisors by the end of the first term.

Some students may be recommended for a terminal M.S. degree. Such students must have registered full time in the division for a minimum of three quarters and have completed nine courses at the 30000-level or above in STEM departments with grades of C or better (at least two must be research courses with an approved faculty member). In addition, these students may, at the discretion of the Deputy Director for Education, be required to submit a paper on their research.

To establish candidacy, students are required to develop a research proposal describing the objectives, approaches and expected outcomes of their Ph.D. thesis work. Students will give an oral presentation of their written proposal in front of a faculty review committee for approval. This process should be completed no later than the end of the Winter quarter of the second year.
Pedagogical training is a component of our doctoral education. The PME requires that all graduate students engage in meaningful teaching experiences. Most students will satisfy this requirement by serving as Teaching Assistants. Students can also propose a meaningful teaching equivalent to be approved by the Deputy Director for Education and Outreach and the Dean of Students (proposed equivalents must have clearly articulated pedagogical learning goals and objectives).

- Students entering the doctoral program in 2017, 2016, 2015, and 2014 must either complete two quarters as a Teaching Assistant or one quarter as a Teaching Assistant and one approved equivalent.
- Students entering the doctoral program after 2017 must either complete two quarters as a Teaching Assistant or one quarter as a Teaching Assistant and two approved equivalents.

PME graduate students are not expected to complete their teaching requirement in their first year, but may be asked to TA as needed in any year thereafter. While there is some consideration of student preferences in teaching assignments, assignments overall are determined by departmental need.

All students will receive scholarship support from the Pritzker School of Molecular Engineering for the first quarter. Subsequently, PME provides full financial support to all graduate students throughout their graduate study at the PME as long as they remain in good standing.

The PME adopts the residency requirement of the University of Chicago as a part of the degree requirements.

Molecular Engineering Courses

MENG 30000. Introduction to Emerging Technologies. 100 Units.
This course will examine five emerging technologies (stem cells in regenerative medicine, quantum computing, water purification, new batteries, etc.) over two weeks each. The first of the two weeks will present the basic science underlying the emerging technology; the second of the two weeks will discuss the hurdles that must be addressed successfully to convert a good scientific concept into a commercial product that addresses needs in the market place.
Instructor(s): Matthew Tirrell Terms Offered: Autumn
Prerequisite(s): Completion of the general education requirements in mathematics and physical or biological sciences
Note(s): May not be counted toward PME doctoral requirements
Equivalent Course(s): MENG 20000

MENG 31100. Math Methods in Molecular Engineering. 100 Units.
This course will provide an overview of the general mathematical framework required for the further study of the basic theories (e.g. thermodynamics, quantum mechanics, transport) of molecular engineering. The content of this course mainly includes differential equations, statistics, complex analysis, integral transforms, and stochastic processes, which will be illustrated in the context of common problems in diffusion, heat conduction, particle transfer, and chemical reactions. This course will lay the mathematical foundations for further study in other courses, as well as in future computational research activities.
Instructor(s): Sihong Wang Terms Offered: Autumn
Prerequisite(s): Required Math Courses in the Core, Algebra, Calculus, Physics

MENG 31200. Thermodynamics and Statistical Mechanics. 100 Units.
This course will present an overview of thermodynamics and statistical mechanics in the context of molecular engineering applications. Such applications will include prediction of the thermophysical properties of multicomponent gases, solids and liquids, prediction of adsorption processes on surfaces or interfaces, and molecular-level descriptions of synthetic and biological macromolecules in solution. Throughout the course, emphasis will be placed on connecting molecular structure and interactions to measurable macroscopic properties.
Instructor(s): Juan de Pablo, Allison Squires Terms Offered: Autumn
Prerequisite(s): MENG 21400 or CHEM 26100-26200 or PHYS 27900 or equivalent, or the consent of the instructor

MENG 31300. Transport Phenomena. 100 Units.
This course covers essential aspects of molecular transport processes, including fluid dynamics, mass transport and diffusion processes, and energy and heat transport processes. It also discusses the coupling that arises between momentum, mass and energy transport processes.
Instructor(s): Jay Schieber Terms Offered: Autumn

MENG 31400. Advanced Quantum Engineering. 100 Units.
Quantum mechanics underlies many areas of modern engineering, including materials science, photonics, electronics, metrology, and information processing. This course explores both the fundamental physics of quantum systems as well as the tools utilized to engineer and control them. Topics to be discussed may include eigenvalues and eigenstates, harmonic oscillators, operators, symmetries, spin, angular momentum, perturbation theory, and time evolution. We will also explore examples of engineered quantum systems. The course will assume that students have prior exposure to quantum mechanics at the intermediate undergraduate level.
Instructor(s): Tian Zhong Terms Offered: Autumn
Prerequisite(s): Equivalent to CHEM 26100 or PHYS 23400-23500
MENG 32200. Cellular Engineering. 100 Units.
Cellular engineering is a field that studies cell and molecule structure-function relationships. It is the development and application of engineering approaches and technologies to biological molecules and cells. This course provides a bridge between engineers and biologists that quantitatively study cells and molecules and develop future clinical applications. Topics include fundamental cell and molecular biology; immunology and biochemistry; receptors, ligands, and their interactions; nanotechnology/biomechanics; enzyme kinetics; molecular probes; cellular and molecular imaging; single-cell genomics and proteomics; genetic and protein engineering; and drug delivery and gene delivery.
Instructor(s): Jun Huang Terms Offered: Winter
Prerequisite(s): Completion of the first two quarters of a Biological Sciences Fundamentals Sequence Equivalent Course(s): MOMN 34310, BIOS 21508, MENG 22200

MENG 32300. Quantitative Systems Biology. 100 Units.
This course aims to provide students with knowledge on the use of modern methods for the analysis, manipulation, and modeling of complex biological systems, and to introduce them to some of the most important applications in quantitative and systems biology. We will first survey theoretical concepts and tools for analysis and modeling of biological systems like biomolecules, gene networks, single cells, and multicellular systems. Concepts from information theory, biochemical networks, control theory, and linear systems will be introduced. Mathematical modeling of biological interactions will be discussed. We will then survey quantitative experimental methods currently used in systems biology. These methods include single cell genomic, transcriptomic, and proteomic analysis techniques, in vivo and in vitro quantitative analysis of cellular and molecular interactions, single molecule methods, live cell imaging, high throughput microfluidic analysis, and gene editing. Finally, we will focus on case studies where the quantitative systems approach made a significant difference in the understanding of fundamental phenomena like signaling, immunity, development, and diseases like infection, autoimmunity, and cancer.
Instructor(s): Savas Tay Terms Offered: Autumn
Prerequisite(s): Completion of the first two quarters of a Biological Sciences Fundamentals Sequence Equivalent Course(s): MENG 22300

MENG 33100. Biological Materials. 100 Units.
In this course, students will gain an understanding of the science and application of biomaterials, a field that utilizes fundamental principles of materials science with cell biology for applications in therapeutics and diagnostics. The course will introduce the basic classes of biomaterials, considering metals used in medicine, ceramics and biological inorganic materials such as hydroxyapatite, and polymers used in medicine. The basis of protein adsorption modulating biological interactions with these materials will be elaborated. Examples to be covered in the course will include polymers used in drug delivery, polymers used in protein therapeutics, polymers used in degradable biomaterial implants, polymers used in biodiagnostics, and hybrid and polymeric nanomaterials used as bioactives and bioactive carriers. An emphasis in the course will be placed on bioactive materials development. Students will be assessed through in-class discussions, take-home assignments and exams, and an end-of-term project on a topic of the student’s choice.
Instructor(s): Jeffrey Hubbell, Mustafa Guler Terms Offered: Autumn
Prerequisite(s): BIOS 20186 and BIOS 20187, or BIOS 20234 and BIOS 20235
Note(s): This course does not meet the requirements for the Biological Sciences major.
Equivalent Course(s): MENG 23100, BIOS 29328

MENG 33110. Stem Cell Biology, Regeneration, and Disease Modeling. 100 Units.
In this course, students will gain an understanding of the science and application of tissue engineering, a field that seeks to develop technologies for restoring lost function in diseased or damaged tissues and organs. The course will first introduce the underlying cellular and molecular components and processes relevant to tissue engineering: extracellular matrices, cell/matrix interactions such as adhesion and migration, growth factor biology, stem cell biology, inflammation, and innate immunity. The course will then discuss current approaches for engineering a variety of tissues, including bone and musculoskeletal tissues, vascular tissues, skin, nerve, and pancreas. Students will be assessed through in-class discussions, take-home assignments and exams, and an end-of-term project on a topic of the student’s choice.
Instructor(s): Joyce Chen Terms Offered: Spring. This course will be offered starting in the 2021-2022 academic year
Prerequisite(s): BIOS 20186 or BIOS 20234
Equivalent Course(s): MENG 23110, BIOS 21507, MPMM 34300

MENG 33120. The Structural Basis of Biomolecular Engineering. 100 Units.
In this highly practical course, students will learn different approaches to interrogate the structure-function relationship of proteins. Essential skills in identifying related protein sequences, performing multiple sequence alignments, and visualizing and interpreting conservation in the context of available structures will be acquired. The most basic method of biomolecular engineering is based on rationale design which uses such knowledge of sequence and structure to predict or explore changes in function in a low throughput manner. Advanced methods that employ evolutionary platforms, such as phage-, ribosome-, and yeast display, will also be introduced for screening large libraries of biomolecules to find variants with a specific function of interest. Additional biomolecular engineering topics to be covered may include computational tools to model and design proteins, protein fusions, enzymatic or chemical modifications to change function, and pharmacokinetics.
Students will be assessed through in-class discussion, take-home assignments, exams, and an end-of-term project chosen by the student with approval from the instructor(s).

Instructor(s): Juan Mendoza

Terms Offered: Spring

Prerequisite(s): BIOS 20200

Equivalent Course(s): MENG 23120

MENG 33130. Proteomics and Genomics in Biomolecular Engineering. 100 Units.

Modern genomic and proteomic technologies are transforming the analysis and engineering of biological systems. One part of the course will introduce the molecular biology of genomics, including how and why next-generation sequencing is used to measure DNA, RNA, and epigenetic patterns. In addition to experimental tools, it will cover key computational concepts for transforming raw genomic data into biologically meaningful data, as well as the application of those results to analyze biological systems. Specific topics will vary but will include single-cell RNA-sequencing and its analysis in different settings. The other part of the course will focus on technologies that enable the identification of proteins and their dysregulation in disease. Examples include mass spectrometry techniques to determine the exact number of proteins in cells, as well as techniques that identify the types and locations of post-translational protein modifications, such as histone methylation, that are frequently associated with diseases such as cancer. Additionally, the course will review methods to discover protein-protein interactions using computational and experimental screening methods. Student assessments will be made through in-class discussion, take-home assignments, exams, and an end-of-term project chosen by the student with approval from the instructor(s).

Instructor(s): Juan Mendoza

Terms Offered: Autumn

Prerequisite(s): BIOS 20200 or equivalent, and experience with data analysis and computation in R or Python (e.g., MENG 26030, BIOS 20151/20152, STAT/CMSC 11800, or STAT 22000).

Equivalent Course(s): MENG 23130

MENG 33140. Biodiagnostics and Biosensors. 100 Units.

This course focuses on the biological and chemical interactions that are important for the diagnosis of diseases and the design of new assays. The principles and mechanisms of molecular diagnostics and biosensors, as well as their applications in disease diagnosis, will be discussed. Bioanalytical methods including electrochemical, optical, chemical separation, and spectroscopic will be described. Surface functionalization and biomolecular interactions will be presented for the development of protein and DNA based biosensor applications. The goals for the course are to introduce the fundamental mechanisms of bioanalytical methods/tools, examples of specific methods for diagnostic purposes, and analytical methods necessary for developing new precision medicine tools.

Instructor(s): Mustafa Guler

Terms Offered: Spring

Prerequisite(s): Completion of the first two quarters of a Biological Sciences Fundamentals Sequence

Equivalent Course(s): BIOS 28700, MENG 23140

MENG 33150. Nanomedicine. 100 Units.

This course focuses on the applications of nanotechnology in medicine. The chemical, physical and biological features of the nanomaterials will be discussed for applications in medicine. A survey of concepts in therapeutic drug delivery methods, diagnostic imaging agents and cell-materials interactions will be discussed.

Instructor(s): Mustafa Guler

Terms Offered: Winter

Equivalent Course(s): MENG 23150

MENG 33200. Principles of Immunology. 100 Units.

In this course students will gain a comprehensive understanding of the essential principles of immunology. The course will introduce the concept of innate immunity and pattern recognition and how antigen is processed for presentation to the immune system. We will examine how antigen presentation links innate and adaptive immunity. We will then discuss the two arms of adaptive immunity (humoral and cellular) in detail from their development to effector stages. In the last section of the course we will discuss some key aspects of immune system function including immunological memory and vaccination, immunological tolerance and its failure (autoimmunity/allergy) and mucosal immunology and the microbiome. Each topic will be introduced with a lecture and review article during the first class of each week. Students will then lead the discussion of the primary articles assigned in the second class. The course will be graded on class participation, a midterm, and a final essay-based exam.

Instructor(s): Cathryn Nagler

Terms Offered: Autumn

Prerequisite(s): An introductory course in immunology is not required. Although intended primarily for graduate students in the Pritzker School of Molecular Engineering, graduate students in the Immunology, Microbiology, and CMMN programs and undergraduates may enroll with the consent of the instructor.

MENG 33300. Quantitative Immunobiology. 100 Units.

The science of immunology was born at the end of the 19th century as a discipline focused on the body’s defenses against infection. The following 120+ years has led to the discovery of a myriad of cellular and molecular players in immunity, placing the immune system alongside the most complex systems such as Earth’s global climate and the human brain. The functions and malfunctions of the immune system have been implicated in virtually all human diseases. It is thought that cracking the complexity of the immune system will help manipulate and engineer it against some of the most vexing diseases of our times such as AIDS and cancer. To tackle this complexity, immunology in the 21st century - similar to much of the biological sciences - is growing closer to mathematics and data sciences, physics, chemistry and engineering. A central challenge is to use the wealth
of large datasets generated by modern day measurement tools in biology to create knowledge, and ultimately predictive models of how the immune system works and can be manipulated. The goal of this course is to introduce motivated students to the quantitative approaches and reasoning applied to fundamental questions in immunology.

Instructor(s): Nicolas Chevrier
Terms Offered: Spring
Prerequisite(s): Completion of the first two quarters of a Biological Sciences Fundamentals Sequence. Knowledge of R is recommended but not required. Courses in immunology and microbiology are an advantage but not required (e.g., BIOS 25256 Immunobiology; BIOS 25206 Fundamentals of Bacterial Physiology).
Equivalent Course(s): MENG 23300, BIOS 26403, IMMU 34800

MENG 33310. Immunoengineering Laboratory. 100 Units.
The goal of this course is to provide students with an original and hands-on research experience in the fields of immunoengineering and synthetic immunology, whereby new molecules will be designed and tested by students in the lab to probe or control immune processes.
Instructor(s): Nicolas Chevrier
Terms Offered: Spring
Equivalent Course(s): MENG 23310

MENG 33500. Synthetic Biology. 100 Units.
The objective of this course is to provide an overview of the fundamentals of synthetic biology by exploration of published and primary literature. Synthetic biology is an interdisciplinary area that involves the application of engineering principles to biology. It aims at the (re-)design and fabrication of biological components and systems that do not already exist in the natural world. Our goal in the course will be to examine how to apply design principles to biological systems. This will require understanding how biological systems operate, what design principles are successful in biology, and a survey of current approaches in the field to tackle these challenges. Topics will include genetic manipulation, pathway engineering, protein design, cellular engineering, and tools for information input and output in biological systems.
Instructor(s): Aaron Esser-Kahn
Terms Offered: Spring
Prerequisite(s): Completion of the first two quarters of a Biological Sciences Fundamentals Sequence. MENG 26102, BIOS 20236, and BIOS 20200 are recommended but not required.
Equivalent Course(s): MENG 23500

MENG 33510. Microfluidics and Its Applications. 100 Units.
Precision control of fluids at the micrometer scale (hence microfluidics) provides unprecedented capabilities in manipulation and analysis of cells and proteins. Moreover, fluids and particles behave in fundamentally different ways when confined to small dimensions, making microfluidics an interesting topic of basic research. This course aims to provide students with theoretical knowledge and practical skills on the use of microfluidics for the manipulation and analysis of physical, chemical, and biological systems. We will first survey theoretical concepts regarding microfluidics. We will then focus on design considerations and fabrication methods for multi-layer microfluidic chips using PDMS soft-lithography. We will learn how to fabricate, multiplex, and control PDMS membrane valves and integrate them into high-throughput analytical systems. We will survey recent developments in microfluidics and its scientific and industrial applications. Biological systems analysis in cell sorting, culture, cell signaling, single molecule detection, digital nucleic acid and protein quantification, and biosensing are some of the applications we will cover. This course will have a laboratory component where students will design, fabricate, and use microfluidic devices and therefore acquire hands-on skills in microfluidic engineering.
Instructor(s): Savas Tay
Terms Offered: Spring
Prerequisite(s): MATH 13300 (or higher), or MATH 13200 (or higher) plus BIOS 20151 or BIOS 20152 or BIOS 20236
Equivalent Course(s): MENG 23510

MENG 35100. Introduction to Polymer Science. 100 Units.
This course introduces the basics of polymer materials and their behavior and properties. The course will cover a general overview to polymers, basic terminology and definitions, their classification, and their applications. The mechanistic and kinetic behavior of the major classes of polymerization reactions (step-growth, chain addition, and "living" polymerizations) will be introduced with respect to control over polymer structure/architecture, size, and properties. The course will also discuss polymer properties, polymer thermodynamics, and basic structure-property relationships that provide polymers with their unique characteristics compared to small molecules. Techniques for characterizing the chemical and physical properties of polymer solutions will be introduced, including osmometry, viscometry, and gel permeation chromatography.
Instructor(s): Paul Nealey, Stuart Rowan
Terms Offered: Autumn
Prerequisite(s): MENG 26201 or CHEM 26200
Equivalent Course(s): MENG 25100

MENG 35110. Polymer Synthesis. 100 Units.
This course introduces the most important polymerization reactions, focusing on their reaction mechanisms and kinetic aspects. Topics include free radical and ionic chain polymerization, step-growth polymerization, ring-opening, insertion, controlled living polymerization, crosslinking, copolymerization, and chemical modification of preformed polymers.
Instructor(s): Stuart Rowan
Terms Offered: Winter
Prerequisite(s): CHEM 22000 and CHEM 22100
Equivalent Course(s): MENG 25110, CHEM 39100

MENG 35120. Polymer Physics. 100 Units.
This course is an advanced introduction to polymer physics taught at a level suitable for senior undergraduates and graduate students in STEM fields. Topics that will be covered include the statistics and conformations of linear chain molecules; polymer brushes; thermodynamics and dynamics of polymers, polymer blends and polymer solutions; phase equilibria; networks, gels, and rubber elasticity; linear viscoelasticity; and thermal and mechanical properties.
Instructor(s): Paul Nealey Terms Offered: Spring
Prerequisite(s): MENG 22500
Equivalent Course(s): MENG 25120

MENG 35130. Soft Matter Characterization Laboratory. 100 Units.
The goal of this course is to train students in the fundamental experimental approaches to polymer and soft materials characterization. The course will cover both the theory and practice of techniques focused on three themes: molar mass determination (size exclusion chromatography, laser light scattering, NMR spectroscopy); morphology and structure (x-ray scattering, electron microscopy, atomic force microscopy); and thermomechanical properties (calorimetry, thermogravimetry, dynamic mechanical analysis, rheometry, tensile testing). Contextual application of these characterization techniques to modern research problems will be introduced. Through this course, students will develop foundational experimental skills necessary for addressing research challenges in modern polymer and soft materials science and engineering.
Instructor(s): Philip Griffin Terms Offered: Winter
Prerequisite(s): MENG 25100
Equivalent Course(s): MENG 25130

MENG 35200. Solids, Materials, Surfaces. 100 Units.
This course is an introduction to modern materials chemistry. It covers basic chemistry and physics of condensed systems, such as solids, polymers, and nanomaterials. The electronic structure of metals, semiconductors and magnetically ordered phases will be discussed. We will review optical and electronic properties of different classes of materials using examples of hard and soft condensed matter systems and drawing structure-property relationships for conventional solids, polymers, and nanomaterials. Finally, the course will cover the fundamentals of surface science and material synthesis, applying modern understanding of nucleation and growth phenomena.
Instructor(s): D. Talapin Terms Offered: Autumn
Prerequisite(s): CHEM 26100, CHEM 26200, and CHEM 26300, or equivalent
Equivalent Course(s): CHEM 39000

MENG 35300. Molecular Science and Engineering of Water. 100 Units.
This course will cover the properties of the water molecule, hydrogen bonding, clusters, supercritical water, condensed phases, solutions, confined and interfacial water, clathrates, and nucleation. In addition, methods of water purification, water splitting and fuel cells, water in atmospheric and climate science, and water in biology, health and medicine will be discussed.
Instructor(s): James Skinner, Chong Liu Terms Offered: Autumn
Prerequisite(s): MENG 26201 or CHEM 26200 or PHYS 27900 (or concurrent)
Equivalent Course(s): MENG 25300

MENG 35310. Energy Storage and Conversion Devices. 100 Units.
Course Description: Addressing the challenges of a sustainable energy future requires a foundational knowledge of current and emerging energy conversion and storage technologies. Energy conversion devices such as solar cells, wind turbines, and fuel cells to energy storage systems such as lithium-ion batteries and redox-flow batteries will be covered. Devices related to thermal energy harvesting and management will be introduced as well. Applying basic principles of chemistry, thermodynamics, and transport phenomena, this course will provide a deep understanding of the operational mechanisms, resources, and material properties of each device and the synergies between them.
Instructor(s): Chibueze Amachukwu Terms Offered: Winter. This course will be offered starting in the 2021-2022 academic year
Prerequisite(s): MENG 21400 (or CHEM 26200 or PHYS 27900) AND MENG 21500
Equivalent Course(s): MENG 25310

MENG 35320. Electrochemical Principles and Methods. 100 Units.
This course will cover topics related to basic electrochemical principles, methodologies, and systems. In particular, students will be given an overview of fundamental concepts related to electrochemical potential, electric double layer, electrode kinetics, and mass transport processes. In addition, the application of key electrochemical experimental methods will be covered. A few examples include cyclic voltammetry, AC impedance spectroscopy, and the rotating disk electrode. Throughout the course, students will apply basics principles of thermodynamics, kinetics, and transport phenomena. Lastly, a brief overview of traditional electrochemical systems and emerging technologies related to energy storage and conversion (e.g., lithium-ion batteries, flow batteries, and fuel cells) and bioelectronics applications will be discussed.
Instructor(s): Shrayesh Patel Terms Offered: Spring
Prerequisite(s): MENG 26102 and MENG 26201
Equivalent Course(s): MENG 25320

MENG 35330. Materials and Characterization Tools to Address Challenges in Energy and Water. 100 Units.
The development of new materials, as well as understanding the materials’ structure and dynamics, are at the heart of addressing the challenges in energy and water technologies. This course will introduce students to the design and development of advanced functional materials that enable energy and water related technologies. The importance of all classes of materials spanning metals, alloys, ceramics, polymers, glasses, and their combinations as composite materials will be covered. To understand material properties and function, students will learn about essential characterization tools including microscopy, spectroscopy and mechanical testing techniques. In addition, the course will convey the importance of advanced characterization tools available at X-ray and neutron facilities that are essential in revealing unique physical properties.
Instructor(s): Junhong Chen Terms Offered: Winter
Prerequisite(s): MENG 21400 (or CHEM 26200 or PHYS 27900)
Equivalent Course(s): MENG 25330

MENG 35500. Classical Molecular and Materials Modeling. 100 Units.
This course will introduce students to the methods of molecular modeling. The topics covered will include an introduction to the origin of molecular forces, a brief introduction to statistical mechanics and ensemble methods, and an introduction to molecular dynamics and Monte Carlo simulations. The course will also cover elements of advanced sampling techniques, including parallel tempering, umbrella sampling, and other common biased sampling approaches. Students will also establish expertise in scientific programming in Python 3.
Instructor(s): Andrew Ferguson Terms Offered: Winter
Prerequisite(s): MENG 21400 or CHEM 26200 or PHYS 27900, AND MATH 20100 or PHYS 22100. MENG 21300, or prior course work or research experience with elementary programming, is strongly recommended.
Equivalent Course(s): MENG 25500

MENG 35510. Quantum Molecular and Materials Modeling. 100 Units.
Quantum mechanical methods, including quantum chemistry, density functional theory (DFT), and many body perturbation theory, for simulating the properties of molecules and materials will be explored in this course. Numerical algorithms and techniques will be introduced that allow for solution of approximate forms of the Schroedinger and Boltzmann Equations that model structural and transport properties of molecules and materials. The coupling of DFT with molecular dynamics will be detailed for determining finite temperature properties. Coupling of DFT with spin Hamiltonians to study dynamical spin correlations in materials will also be described. Examples of the application of quantum mechanical methods to materials for energy conversion and quantum information technologies will be provided.
Instructor(s): Giulia Galli Terms Offered: Spring
Prerequisite(s): PHYS 23400 or CHEM 26100 or instructor consent
Equivalent Course(s): MENG 25510, CHEM 26800, CHEM 36800

MENG 35610. Applied Scientific Computing in Molecular Engineering. 100 Units.
This course provides hands-on practical training in scientific computing with a focus on applications to molecular engineering. The first third of the course will provide training in core programming concepts, including a broad introduction to Python programming and use of key scientific libraries. The second third of the course will cover advanced programming topics in CPU and GPU parallel programming and quantum computing, exploring their use through practical examples drawn from a range of scientific and engineering disciplines. The final portion of the class will engage particular applications in computational molecular engineering, including electronic structure calculations of molecules and materials, highlighting the use of modern computing platforms to enable modeling of complex phenomena at unprecedented scales. Students will develop proficiency in making effective use of the diverse landscape of programming models, open-source tools, and computing architectures for high performance computing. Hands-on immersive praxis, mostly using electronic notebooks, will introduce students to the efficient use of several computational resources such as pre-exascale and quantum computers, with the goal of providing them with the confidence and expertise to independently use these tools.
Instructor(s): Marco Govoni Terms Offered: Winter
Prerequisite(s): Prior programming experience and familiarity with Linux/bash are useful but not required. Prior coursework in quantum mechanics is useful but not required.
Equivalent Course(s): MENG 25610

MENG 35620. Applied Artificial Intelligence for Materials Science and Engineering. 100 Units.
Machine learning and other artificial intelligence tools are quickly becoming commonplace in the computational design of materials. This course is intended to introduce the concepts and practical skills needed to employ machine learning techniques across many areas of computational materials science. The course will cover topics including the management of materials data, the creation of surrogate models for costly computations, building predictive models for material properties without known physical models, and using AI to enhance characterization tools. The content of the course will focus both on the theoretical underpinnings of these technologies, as well as the practical skills needed for successful use of AI in an applied setting. Particular application areas include machine learning tools for atomistic simulations, convolutional neural networks for
materials image analysis, Bayesian techniques for material property estimation, and generative methods for molecular design.

Instructor(s): Logan Ward Terms Offered: Winter
Prerequisite(s): Familiarity in object-oriented programming in Python is preferred. Prior coursework or experience in machine learning is recommended but not required.
Equivalent Course(s): MENG 25620

MENG 35630. Design, Processing, and Scale-Up of Advanced Materials. 100 Units.
The course will cover the scientific background needed to design and optimize advanced materials for scalable synthesis. We will introduce the physics-based understanding needed to simulate the non-equilibrium conditions in reacting gas-phase and complex fluids. The course will use in situ measurement data for validation and acceleration of simulations will allow students to experiment and build the conceptual connections to the background theories and simulations. In particular, we will cover examples of scalable material synthesis such as gas-phase combustion synthesis of lithium ion battery materials, atomic layer deposition (ALD) for porous membranes and coatings, Taylor Vortex Reactors (TVR) for the synthesis of industrial catalysts, additive manufacturing of metals using laser sintering, and microfluidic continuous flow reactors for the synthesis of organic crystals for pharmaceutical applications. Data generated using sensors, imaging cameras, spectroscopic probes, and Argonne APS measurements will be combined with machine-learning approaches for decision making, process optimization and steering of synthesis conditions. This course will include optional hands-on sessions at the Argonne National Laboratory’s Materials Engineering and Research Facility, and allow the students to leverage the Manufacturing Data and Machine Learning (MDML) platform and Argonne Leadership Computing Facility (ALCF) supercomputing environment for physics based simulations.
Instructor(s): Santanu Chaudhuri Terms Offered: Spring
Prerequisite(s): MENG 21400 or CHEM 26200 or PHYS 27900, MENG 24200, and MENG 24400 or CHEM 26300. Some background in a programming language like C, C++ or python, databases, and ability to launch computing jobs in Linux environment is preferred
Equivalent Course(s): MENG 25630

MENG 36400. Quantum Computation. 100 Units.
This course provides an introduction to the fundamentals of quantum information to students who have not had training in quantum computing or quantum information theory. Some knowledge of linear algebra is expected, including matrix multiplication, matrix inversion, and eigenvector-eigenvalue problems. Students will learn how to carry out calculations and gain a fundamental grasp of topics that will include some or all of: entanglement, teleportation, quantum algorithms, cryptography, and error correction.
Instructor(s): Andrew Cleland Terms Offered: Winter
Prerequisite(s): MATH 19620 or PHYS 22100 or equivalent
Equivalent Course(s): MENG 26400

MENG 36500. Foundations of Quantum Optics. 100 Units.
Quantum optics seeks to illuminate the fundamental quantum mechanics of the interaction of light and matter. These principles can form the basis for quantum technologies in areas such as cryptography, computation, and metrology. This course provides a foundation in the fundamental principles and applications of quantum optics. Topics to be discussed may include Fermi’s Golden Rule, interaction of two-level atoms and light, spontaneous emission, Rabi oscillations, classical and non-classical photon statistics, beam splitters, atom cavity interaction, vacuum-Rabi splitting, coherence, entanglement, and teleportation. The course will assume that students are comfortable with single-particle quantum mechanics at the level of a typical introductory graduate-level course.
Instructor(s): Alex High Terms Offered: Autumn
Prerequisite(s): PHYS 23400-23500 strongly recommended but not required
Equivalent Course(s): MENG 26500

MENG 36510. Optics and Photonics. 100 Units.
Electromagnetic radiation in the optical spectrum, or light, plays a fundamentally important role in modern physics and engineering. This introductory course covers the basic properties of light, its propagation in and interactions with matter, and techniques for generating, guiding, and detecting light. Photonic technologies including lasers, optical fibers, integrated optics, optoelectronic devices, and optical modulators will be introduced with selected demonstrations of real-world devices.
Instructor(s): Tian Zhong Terms Offered: Winter
Prerequisite(s): PHYS 13300 or PHYS 14300
Equivalent Course(s): MENG 26510

MENG 36600. Electronic and Quantum Materials for Technology. 100 Units.
This is a one-quarter introductory course on the science and engineering of electronic and quantum materials. The intended audience is upper-level undergraduate students and first-year graduate students in Molecular Engineering and other related fields, including Chemistry and Physics. We will learn the basics of electrical and optical properties of electronic materials, including semiconductors, metals, and insulators starting from a simple band picture, and will discuss how these materials enable modern electronic and optoelectronic devices and circuitry. We will also explore the modern synthesis techniques for these materials and the effects of reduced dimensions and emergent quantum properties. No comprehensive exposure to quantum mechanics,
thermodynamics, or advanced mathematical skills will be assumed, even though working knowledge of these topics will be helpful.
Instructor(s): Jiwoong Park Terms Offered: Spring
Prerequisite(s): CHEM 26200 or PHYS 23500 or instructor consent
Equivalent Course(s): CHEM 39300, MENG 26600

MENG 36620. Physics of Solid State Semiconductor Devices. 100 Units.
This course covers the fundamental concepts needed to understand nanoelectronic solid state semiconductor devices. After an overview of the basic properties of semiconductors and electronic transport in semiconductors, we will explore the device physics behind some of the major semiconductor devices that have changed our lives. These include the p-n junction diode, the metal-oxide-semiconductor transistor (MOSFET), the photovoltaic cell (solar cell), the semiconductor light emitting diode (LED) and injection laser, dynamic random access memory (DRAM), and Flash memory. These devices collectively form the backbone behind all computing, communications, and sensing systems used today.
Instructor(s): Supratik Guha Terms Offered: Autumn
Prerequisite(s): MENG 21300 (or PHYS 23500 or CHEM 26100) or PHYS 22700 or PHYS 23600
Equivalent Course(s): MENG 26620

MENG 36630. Introduction to Nanofabrication. 100 Units.
This course will cover the fundamentals of nanofabrication from a practical viewpoint and will be useful for students planning to pursue research involving semiconductor processing technology, as well as broader topics such as microelectromechanical systems (MEMS), quantum devices, optoelectronics, and microfluidics. This course will cover the theory and practice of lithographic patterning; physical and chemical vapor deposition; reactive plasma etching; wet chemical processing; characterization techniques; and other special topics related to state-of-the-art processes used in the research and development of nanoscale devices. A solid grounding in introductory chemistry and physics is expected.
Instructor(s): Peter Duda Terms Offered: Winter
Prerequisite(s): PHYS 13300 and CHEM 10200, or equivalent
Equivalent Course(s): MENG 26630

MENG 37100. Implementation of Quantum Information Processors. 100 Units.
This course emphasizes the experimental aspects of quantum information focusing on implementations rather than algorithms. Several candidates for quantum information systems will be discussed including ion traps, neutral atoms, superconducting circuits, semiconducting quantum dots, and linear optics. Students will develop an appreciation for the basic physics of these systems, and their relative merits in a variety of quantum information applications.
Instructor(s): Hannes Bernien Terms Offered: Spring
Prerequisite(s): MENG 31400 or PHYS 34100 or instructor consent

MENG 37200. Quantum Dissipation and Quantum Measurement. 100 Units.
This course introduces the basic tools and concepts used to describe dissipative quantum systems, where a closed quantum system (described by a Hamiltonian) interacts with a dissipative environment. We will also discuss the basic theory of weak continuous quantum measurements and basic quantum limits to measurement. Applications to quantum optics and quantum information processing will be stressed. Topics to be discussed may include quantum master equations, stochastic wavefunction evolution (i.e. quantum trajectories), quantum noise, quantum Langevin equations, and path integral approaches. The course will assume that students are comfortable with single-particle quantum mechanics at the level of a typical introductory graduate-level course.
Instructor(s): Aashish Clerk Terms Offered: Spring
Prerequisite(s): MENG 31400 or PHYS 34100 or instructor consent

MENG 37300. Experimental Techniques and Advanced Instrumentation. 100 Units.
This course aims to provide students with a knowledge of state-of-the-art experimental measurement techniques and laboratory instrumentation for applications in broad scientific research environments, as well as industrial and general engineering practice. Topics include atomic-scale structural and imaging methods, electronic transport in low dimensional matter, magnetic and optical characterization of materials. Basic concepts in electronic measurement such as lock-in amplifiers, spectrum and network analysis, noise reduction techniques, cryogenics, thermometry, vacuum technology, as well as statistical analysis and fitting of data will also be discussed.
Instructor(s): David Awschalom Terms Offered: Spring
Equivalent Course(s): MENG 27300

MENG 37400. Advanced Quantum Information and Computation. 100 Units.
This course covers the foundations of quantum theory, quantum communication, quantum metrology, quantum computation, quantum error correction, and topological quantum computation.
Instructor(s): Liang Jiang Terms Offered: Winter
Prerequisite(s): MENG 31400 or PHYS 34100 or instructor consent

MENG 49700. Research: Related Departments, Institutes, and Industries. 300.00 Units.
For students requiring course registration for internships or similar professional training opportunities. Students must speak to their PI and receive approval from the Dean of Students before they may be enrolled.
Instructor(s): STAFF
Terms Offered: Autumn Spring Summer Winter

MENG 49900. Research: Molecular Engineering. 300.00 Units.
Molecular engineering research
Instructor(s): Faculty
Terms Offered: Autumn Spring Summer Winter
Note(s): Please select desired number of units when registering

MENG 70000. Advanced Study: Molecular Engineering. 300.00 Units.
Advanced Study: Molecular Engineering

MENG 75000. Advanced Research. 300.00 Units.
TBD
Terms Offered: Autumn