Department of Astronomy and Astrophysics

Chair
• Joshua A. Frieman

Professors
• Jacob L. Bean
• John E. Carlstrom
• Fausto Cattaneo
• Hsiao-Wen Chen
• Daniel Fabrycky
• Wendy L. Freedman
• Joshua A. Frieman
• Michael D. Gladders
• Nickolay Y. Gnedin
• Craig J. Hogan
• Dan Hooper
• Wayne Hu
• Daniel E. Holz
• Edward W. Kolb
• Andrey V. Kravtsov
• Angela V. Olinto
• Paolo Primitera
• Robert Rosner
• Abigail G. Vieregg

Associate Professors
• Bradford A. Benson
• Damiano Caprioli
• Clarence L. Chang
• Alex Drlica-Wagner
• Jeffrey McMahon

Assistant Professors
• Chihway Chang
• Alex Ji
• Austin Joyce
• Gordan Krnjaic
• Jamie Law-Smith
• Diana Powell
• Leslie Rogers
• Irina Zhuravleva

Emeritus Faculty
• Kyle M. Cudworth
• Doyal A. Harper, Jr.
• Lewis M. Hobbs
• Edward J. Kibblewhite
• Arieh Königl
• Richard G. Kron
• Donald Q. Lamb, Jr.
• Stephan S. Meyer
Faculty in the Department of Astronomy and Astrophysics work on a wide range of topics at the frontiers of astrophysics: from understanding the beginning of the Universe to the search for habitable extrasolar planets; from the formation and evolution of the earliest galaxies to modeling the most energetic events in the modern Universe; from exploring our own solar system to the largest structures of the Universe. The department participates in major facilities that support the programs of our research groups. Many of these projects take advantage of connections with the neighboring national laboratories, Argonne and Fermilab, for both intellectual and technical resources. Research groups have access to leading telescopes worldwide, including the 6.5-m Magellan Telescopes at Las Campanas, Chile; the Dark Energy Survey at Cerro Tololo Inter-American Observatory in Chile; and the South Pole Telescope, with its ongoing development of powerful new imagers for measuring the Cosmic Microwave Background. Departmental researchers also make use of a number of telescopes (Hubble, Kepler, Chandra, Fermi, and others) and are actively developing new programs for EUSO, POEMMA, JWST, WFIRST, TESS, SOFIA and LSST. Chicago is an active participant in gravitational waves research as a member of LIGO, leading the development of the Holometer at Fermilab, and studying extreme cosmic particles at the Auger Observatory. We are a founding member of the world’s largest optical telescope, the 25-meter Giant Magellan Telescope, which is scheduled for construction in Chile toward the end of the decade.

PROGRAM REQUIREMENTS

The requirements for the Ph.D. degree in Astronomy and Astrophysics are satisfied through the following steps:

- Completion of graduate courses
- Full-time scholastic residence of at least 300 units of coursework per quarter, including summer
- Completion of pre-candidacy research projects
- Successful completion of a two-part Candidacy Exam, taken at the beginning and end of the second year
- Identification of a Thesis Advisor
- Formation of a Thesis Committee
- Thesis research and preparation
- Final Examination

ADVISING/MENTORING

Incoming students are assigned a faculty mentor who will advise and guide the student as they navigate the graduate program. Students are invited to seek out potential research supervisors as early as possible. Engagement with research is encouraged and supported by the program structure and through departmental events. Each week there are various talks, seminars, and colloquia highlighting current research by departmental members and visitors that bring together students, faculty, research scientists and post-docs as a vibrant intellectual community. These occasions help facilitate discovery of research areas and projects that may be of interest to incoming students.

PRE-CANDIDACY REQUIREMENTS

During the first and second years, students complete the following Core Courses:

- ASTR 30100 Stars
- ASTR 31000 Cosmology I
- ASTR 30400 Galaxies
- ASTR 30300 Interstellar Matter
- ASTR 31100 High Energy Astrophysics
- ASTR 30600 Detection of Radiation

Other required courses are:

- ASTR 35000 Order-of-Magnitude Astrophysics
- ASTR 34000 Statistical Methods in Astrophysics
Additionally, ASTR 37100 Precandidacy Research is taken every quarter. In this course, students arrange with a faculty supervisor to conduct a short-term independent research project lasting one or more quarters. Research completed in ASTR 37100 is presented as part of the two-part Candidacy Exam taken in the Autumn and Spring Quarters of the second year.

Plan of Study

First Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 30100</td>
<td>ASTR 31000</td>
<td>ASTR 30400</td>
<td>ASTR 37100</td>
<td></td>
</tr>
<tr>
<td>ASTR 35000</td>
<td>ASTR 49910</td>
<td>ASTR 49920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTR 37100</td>
<td>ASTR 37100</td>
<td>ASTR 37100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 30300</td>
<td>ASTR 31100</td>
<td>ASTR 30600</td>
<td>ASTR 37100</td>
<td></td>
</tr>
<tr>
<td>ASTR 37100</td>
<td>ASTR 34000</td>
<td>ASTR 49930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTR 49900</td>
<td>ASTR 37100</td>
<td>ASTR 37100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advancement to candidacy is made when a student has successfully passed the two-part Candidacy Exam, and established a Thesis Committee by the end of the Autumn Quarter of the third year. After candidacy is established, students enroll in ASTR 49400 Post-Candidacy Research and may also take electives of advanced coursework. Ph.D. candidates are expected to meet with their committees at least twice per year to review progress on the thesis project.

Financial Support

All students admitted to the Ph.D. program are offered full financial support. Generally this takes the form of a teaching assistantship that provides a full tuition scholarship and pays a competitive monthly stipend. Teaching assistants are typically assigned to one of the undergraduate laboratory courses in the general education program. The department requires a minimum of two quarters of teaching, after which students may continue to be supported through teaching assistantships, research assistantships, or fellowship funding. Students are urged to compete for the many national and other fellowships available. Incoming students who hold a fellowship may defer the teaching assignment requirement.

Grading Policy

All required courses are taken for a quality grade (3.0 on a scale of 4.0). ASTR 37100 Pre-Candidacy Research and ASTR 49400 Post-Candidacy Research are typically taken as P/F, but a letter grade may be requested by the student.

Graduate students are expected to maintain an average grade of B (3.0 on a scale of 4.0) or better. If a student falls below this average, the Deputy Chair for Academic Affairs, in consultation with the student and other faculty, will identify appropriate actions for enhancing academic progress.

Electives

Elective courses numbered in the 300s and 400s provide more depth in particular research areas, allowing students to explore topics of interest. Students may also take electives during pre-candidacy, or following advancement to candidacy. An instructor may choose to issue a grade of P/F in certain elective courses; however, the student may request a letter grade instead.

Dissertation and Final Examination

The Ph.D. thesis may be a single-author or multiple-author paper that is submitted to a research journal of high quality and judged to be suitable for publication by the student’s full Thesis Committee. This research is presented to the Thesis Committee in a Final Examination to engage in dialogue and debate, and receive constructive criticism. Final examinations are public events attended by the departmental community.

Contacts

For general information about application procedures, please contact the Student Affairs Administrator, Laticia Rebeles, lrebeles@astro.uchicago, (773) 702-9808. Additional information regarding the academic program is available on the Department of Astronomy and Astrophysics (https://astrophysics.uchicago.edu/) website.
ASTRONOMY AND ASTROPHYSICS COURSES

ASTR 30100. Stars. 100 Units.
Introduction to stars (physical and observational), hydrodynamics of self-gravitating fluids, statistical mechanics and equations of state, energy transport, astrophysical nuclear reactions, stellar models, advanced topics.
Instructor(s): Alex Ji Terms Offered: Autumn
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 30300. Interstellar Matter. 100 Units.
Interstellar medium, collision-less systems, distribution of stars in the solar neighborhood, stellar kinematics/dynamics, observations of galactic large-scale structure, theory of galactic structure and evolution.
Instructor(s): Hsiao-Wen Chen Terms Offered: Autumn
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 30400. Galaxies. 100 Units.
The observed universe, the universe at high redshift, early universe microwave background radiation, relativistic homogeneous isotropic cosmologies, evolution of structure in the universe, primordial nucleosynthesis.
Instructor(s): Hsiao-Wen Chen Terms Offered: Spring
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 30600. Detection of Radiation. 100 Units.
Radiation as a random process, optical coherence, and signal analysis in spatial and temporal domains, along with the detection and measurement of radiation with astronomical instruments.
Instructor(s): Jeff McMahon Terms Offered: Spring
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 31000. Cosmology I. 100 Units.
This course presents an introduction to the principles of cosmology. The first part introduces homogeneous, relativistic cosmologies and covers the Robertson-Walker metric, dynamics in the presence of matter, radiation, and dark energy, the universe as a function of time and redshifts, and techniques for calculating observable quantities. The next part covers the growth and evolution of structure in the universe including the formation of clusters and voids, correlation functions, and the mass spectrum. The next part covers the physics of the early universe, including inflation, primordial nucleosynthesis, and recombination. The final part covers current topics in cosmology, including analysis of the cosmic microwave background and tests for detecting and measuring dark matter and dark energy.
Instructor(s): Austin Joyce Terms Offered: Winter
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 31100. High Energy Astrophysics. 100 Units.
This course covers a wide range of phenomena associated with the astrophysics of high energy photons, cosmic rays and neutrinos, including the processes of ionization, bremsstrahlung, synchrotron, pion production, Compton and inverse Compton scattering, as well as cosmic ray acceleration. Specific sources of high energy emission will also be discussed, including active galaxies, pulsars, gamma-ray bursts and supernova remnants.
Instructor(s): Damiano Caprioli Terms Offered: Winter
Prerequisite(s): Open to 4th year undergraduates by consent of instructor.

ASTR 31400. Creative Machines and Innovative Instrumentation. 100 Units.
An understanding of the techniques, tricks, and traps of building creative machines and innovative instrumentation is essential for a range of fields from the physical sciences to the arts. In this hands-on, practical course, you will design and build functional devices as a means to learn the systematic processes of engineering and fundamentals of design and construction. The kinds of things you will learn may include mechanical design and machining, computer-aided design, rapid prototyping, circuitry, electrical measurement methods, and other techniques for resolving real-world design problems. In collaboration with others, you will complete a mini-project and a final project, which will involve the design and fabrication of a functional scientific instrument. The course will be taught at an introductory level; no previous experience is expected. The iterative nature of the design process will require an appreciable amount of time outside of class for completing projects. The course is open to undergraduates in all majors (subject to the pre-requisites), as well as Master’s and Ph.D. students.
Instructor(s): Autumn Quarter Instructor: Scott Wakely Terms Offered: Autumn Spring Winter
Prerequisite(s): PHYS 12200 or PHYS 13200 or PHYS 14200; or CMSC 12100 or CMSC 12200 or CMSC 12300; or consent of instructor.
Equivalent Course(s): CMSC 21400, PSMS 31400, PHYS 21400, CHEM 21400, ASTR 21400

ASTR 32060. What Makes a Planet Habitable? 100 Units.
This course explores the factors that determine how habitable planets form and evolve. We will discuss a range of topics, from the formation of planets around stars and the delivery of water, to the formation of atmospheres, climate dynamics, and the conditions that allow for the development of life and the evolution of complex life. Students will be responsible for periodically preparing presentations based on papers in peer-reviewed journals and leading the discussion.
Instructor(s): E. Kite Terms Offered: Winter
Equivalent Course(s): GEOS 32060, GEOS 22060, ASTR 22060
ASTR 34000. Statistical Methods in Astrophysics. 100 Units.
An exploration of the variety of statistical methods used in modern astrophysics. We discuss the frequentist (hypothesis tests, confidence intervals) and Bayesian (explicit priors, model-choosing, parameter estimation) approaches. Other topics include: Markov Chain Monte Carlo and other computational statistics; multidimensional likelihood space; Fischer information matrices; time series analysis. Assignments draw from examples in the astronomical literature.
Instructor(s): Chihway Chang Terms Offered: Winter

ASTR 35000. Order-of-Magnitude Astrophysics. 100 Units.
In physics and astrophysics, an approximate answer is often just as (if not more) useful than an exact answer. Making order-of-magnitude estimates is helpful to develop physical intuition, to verify numerical solutions, and to evaluate whether a research problem is worth pursuing. In this course, students will receive coaching and practice in physics-based reasoning, back-of-the envelope estimation, and thinking on their feet. Students will be encouraged to take a broad perspective, to think critically, and to have fun using physics to understand the universe around them.
Instructor(s): Leslie Rogers Terms Offered: Autumn
Note(s): Open to 3rd and 4th year undergraduates in the Physical Sciences by instructor consent.
Equivalent Course(s): ASTR 25000

ASTR 37100. Precandidacy Research. 300.00 Units.
Students arrange with a faculty research supervisor to conduct a short-term independent research project lasting one or more quarters. Research completed in ASTR 37100 is presented as part of the student's candidacy exams.
Instructor(s): Various Terms Offered: Autumn Spring Summer Winter

ASTR 39900. Reading And Research: Astronomy. 300.00 Units.
Readings and Research for working on their PhD.
Terms Offered: Autumn Spring Summer Winter

ASTR 49400. Post-Candidacy Research. 300.00 Units.
Independent research undertaken towards completion of the dissertation.
Instructor(s): Various Terms Offered: Autumn Spring Summer Winter
Prerequisite(s): Completion of all candidacy requirements.

ASTR 49900. Graduate Research Seminar. 100 Units.
The instructor chooses a topic for the seminar and assigns papers that develop the topic from the earliest times to the most recent results. Students each present papers during the course, as assigned, and lead a discussion. The purpose is to give students practice in analyzing the literature and presenting to their peers, as well to assure exposure to a breadth in the topics in astronomy and astrophysics.
Instructor(s): Wayne Hu, Hsiao-Wen Chen, Wendy Freedman Terms Offered: Autumn Spring Winter. Autumn Quarter instructor Wayne Hu; Winter Quarter instructor Hsiao-Wen Chen; Spring Quarter instructor Wendy Freedman.
Prerequisite(s): Intended for doctoral students in the Department of Astronomy and Astrophysics.

ASTR 49910. Graduate Seminar: Colloquium. 100 Units.
In this course for first-year Ph.D. students in Astronomy and Astrophysics, students will become acquainted with the research of the weekly colloquium speakers and prepare for active participation in the colloquia.
Instructor(s): Alex Ji Terms Offered: Winter

ASTR 49920. Graduate Seminar: Fellowship and Proposal Writing. 100 Units.
In this course for first-year Ph.D. students in Astronomy and Astrophysics, students will identify prospective fellowship or research funding opportunities and learn how to prepare strong applications, with the goal of producing completed examples as final projects.
Instructor(s): Austin Joyce Terms Offered: Spring

ASTR 49930. Graduate Seminar: Candidacy Preparation. 100 Units.
In this course for second-year Ph.D. students in Astronomy and Astrophysics, students will prepare for part two of the candidacy examination through presentations, board work, discussion, and questions.
Instructor(s): Wayne Hu Terms Offered: Spring