Committee on Neurobiology

Chair
- Daniel McGehee

Professors
- Edward Awh, Psychology
- Francisco Bezanilla, Biochemistry and Molecular Biology
- Jean Decety, Psychology
- Harriet de Wit, Psychiatry and Behavioral Neuroscience
- Glyn Dawson, Pediatrics
- Ruth Anne Eatock, Neurobiology
- David Freedman, Neurobiology
- Aaron P. Fox, Pharmacological and Physiological Sciences
- Elliot S. Gershon, Psychiatry and Behavioral Neuroscience
- Christopher Gomez, Neurology
- William Green, Neurobiology
- Elizabeth Grove, Neurobiology
- Melina Hale, Organismal Biology and Anatomy
- Christian Hansel, Neurobiology
- Nicholas Hatsopoulos, Organismal Biology and Anatomy
- Leslie Kay, Psychology
- Andrea King, Psychiatry and Behavioral Neuroscience
- Richard P. Kraig, Neurology
- Yamuna Krishnan, Chemistry
- Daniel Margoliash, Organismal Biology and Anatomy
- Peggy Mason, Neurobiology
- James A. Mastrianni, Neurology
- John Maunsell, Neurobiology
- Deborah Nelson, Pharmacological and Physiological Sciences
- Eduardo Perozo, Biochemistry and Molecular Biology
- Brian Popko, Neurology
- Nanduri Prabhakar, Medicine
- Brian Prendergast, Psychology
- Victoria Prince, Organismal Biology and Anatomy
- Clifton Ragsdale, Neurobiology
- Anthony T. Reder, Neurology
- Raymond P. Roos, Neurology
- S. Murray Sherman, Neurobiology
- Sangram Sisodia, Neurobiology
- Betty Solven, Neurology
- Wei-Jen Tang, Ben May Department of Cancer Research
- Gopal Thinakaran, Neurobiology
- V. Leo Towele, Neurology
- Edward Vogel, Psychology
- Ming Xu, Anesthesia and Critical Care
- Xiaoxi Zhuang, Neurobiology

Associate Professors
- Sliman Bensmaia, Organismal Biology and Anatomy
- Jason MacLean, Neurobiology
- Jeremy Marks, Pediatrics
The Committee on Neurobiology is an interdepartmental committee designed to provide training and instruction for students interested in the biology of the nervous system, and to encourage communication and the exchange of ideas between faculty members and students interested in neurobiology. Recent technical and conceptual developments in neuroscience have produced remarkable growth in this field. The committee reflects this growth in its structure, having members from different departments whose research interests include a broad spectrum of approaches from the biochemical and molecular to the behavioral and comparative. The committee aims to provide broad training in technical and theoretical aspects of the neurosciences.

THE DEGREE OF DOCTOR OF PHILOSOPHY

Students initially are admitted to the Division of the Biological Sciences and must meet divisional requirements. The progress of each student will be supervised during the first year by the Student Advising Committee until the student chooses a thesis advisor. Upon choosing a thesis advisor, an advisory committee chaired by a tenured faculty member who is not the student's thesis advisor is formed. The advisory committee consists of at least four faculty members with a majority being members of the Committee on Neurobiology. As a student's focus changes, the composition of the advisory committee may be modified.

Each student is required to take three core courses, two graded laboratory rotations and four electives (one of which has to be a quantitative course). Usually these courses will be taken during the first year and part of the second year. Required courses include a series of courses on cellular, developmental, and systems neurobiology. Elective courses focus on topics such as neuropharmacology, systems neurophysiology, development, physiology of ion channels and statistics.

During the first year, in addition to taking courses, students rotate through different laboratories. During the second year, the student writes a thesis proposal in NRSA format and defends this before the advisory committee. For the purposes of the divisional requirements, this is the examination testing the candidate's qualifications for candidacy.

The original observations included in the final Ph.D. dissertation should be judged suitable for publication. The final oral examination for the Ph.D. degree consists of a public seminar and a private defense conducted by the advisory committee and by other such members of the University faculties as may be deemed suitable.

NEUROBIOLOGY COURSES

NURB 30020. Intro To Faculty Research. 100 Units.
First-year students in Neurobiology and Computational Neuroscience are required to attend this chalk talk series where faculty members looking for rotating students present the research conducted in their labs.
Instructor(s): It varies: faculty members looking for new students
NURB 30107. Behavioral Neuroscience. 100 Units.
This course provides an introduction to neuroethology, examining brain activity relative to behaviors and organisms evaluated from an adaptive and evolutionary perspective. It starts with a brief introduction to classical ethology, and then develops a series of example animal model systems. Both invertebrate and vertebrate models are considered although there is a bias towards the latter. Many of these are "champion" species. There is a heavier demand for reading original data papers than typical in introductory graduate level courses. An integral part of the course is a series of assignments where you develop grant proposals describing novel science experiments in the animal models, thereby challenging your knowledge of the material and teaching aspects of scientific writing. In recent years there has been more computational material presented. The course is not available to undergraduates without prior approval of the instructor.
Instructor(s): D. Margoliash Terms Offered: Spring
Note(s): The course is not available to undergraduates without prior approval of the instructor.
Equivalent Course(s): CPNS 30107, PSYC 40107

NURB 30500. Medical Neurobiology. 300.00 Units.
This intensive course starts by introducing the student to neuroanatomy and neurophysiology. With the vocabulary afforded by that introduction in hand, students will then learn the general principles of perception, followed by focused treatment of vision, hearing and verbal communication, pain, and equilibrium. Students will then learn the key components of voluntary motor control including the motor unit, reflexes, gait, posture, praxis, cerebellar and basal ganglia function, and gaze control. The course wraps up with a consideration of neural contributions to homeostasis and a consideration of how the brain informs the practice of medicine. The course consists of daily lectures, 9 laboratory exercises, 6 review sessions, a midterm and a final. In addition, the ophthalmology and neurology exams will be taught in collaboration with Clinical Skills. At the conclusion of this course, students will be prepared for the boards, the neurological part of CPPT, and most importantly for understanding the neural contributions to disorders of all organ systems.
Instructor(s): P. Mason Terms Offered: Autumn

NURB 31600. Survey of Systems Neuroscience. 100 Units.
This lab-centered course teaches students the fundamental principles of vertebrate nervous system organization. Students learn the major structures and the basic circuitry of the brain, spinal cord and peripheral nervous system. Somatic, visual, auditory, vestibular and olfactory sensory systems are presented in particular depth. A highlight of this course is that students become practiced at recognizing the nuclear organization and cellular architecture of many regions of brain in rodents, cats and primates.
Instructor(s): S. Bensmaia Terms Offered: Autumn
Prerequisite(s): NSCI 20130. For Biological Sciences majors: Three quarters of a Biological Sciences fundamentals sequence
Equivalent Course(s): BIOS 24208, CPNS 30116, NSCI 23500, ORGB 32500

NURB 31800. Cellular Neurobiology. 100 Units.
This course is concerned with the structure and function of the nervous system at the cellular level. The cellular and subcellular components of neurons and their basic membrane and electrophysiological properties will be described. Cellular and molecular aspects of interactions between neurons will be studied. This will lead to functional analyses of the mechanisms involved in the generation and modulation of behavior in selected model systems.
Instructor(s): C. Hansel, X. Zhuang, and R. A. Eatock Terms Offered: Autumn
Equivalent Course(s): CPNS 30000

NURB 32000. Intro To Faculty Research. 100 Units.
First-year students in Neurobiology and Computational Neuroscience are required to attend this chalk talk series where faculty members looking for rotating students present the research conducted in their labs.
Equivalent Course(s): CPNS 31900

NURB 32200. Molecular Neurobiology. 100 Units.
This course is devoted to the examination of current research in the molecular biology of the nervous system. We will explore the structure and function of macromolecules that control, propagate, and elicit neural signaling. Topics covered include 1) structural elements of neurons and glia; 2) structure and function of the synapse; 3) aspects of the molecular basis of neural signaling; and 4) gene expression in neural systems. Lectures draw on current journal literature to present a state-of-the-art background of the topic, the current questions being explored, as well as problems and aspects.
Instructor(s): W. Green; B. Popko Terms Offered: Spring. Alternate
NURB 32300. Molecular Principles of Nervous System Development. 100 Units.
This elective course provides an overview of the fundamental questions in developmental neurobiology. It is based on primary research papers and highlights key discoveries in vertebrate and invertebrate animals that advanced our understanding of nervous system development. Topics covered, among others, will include neural stem cells, neuronal specification and terminal differentiation, and circuit assembly. Dogmas and current debates in developmental neurobiology will be discussed, aiming to promote critical thinking about the field. This advanced-level course is open to upper level undergraduate and graduate students and combines lectures, student presentations, and discussion sections. Neuroscience major undergrads need to have completed the Fundamentals of Neuroscience sequence.
Instructor(s): E. Grove, P. Kratsios Terms Offered: Spring
Prerequisite(s): For undergrads: NSCI 20110, 20120, 20130 and a basic understanding of Genetics, or 'BIOS 20187' (Fundamentals of Genetics) is recommended, but not required.
Equivalent Course(s): CPNS 32300, NSCI 22300, DVBI 32300

NURB 32400. Synaptic Physiology. 100 Units.
This course covers the basic principles of synaptic transmission and plasticity using a combination of lecture and discussion of primary literature. Lecture topics cover membrane electrical phenomena that lead to release of neurotransmitter presynaptically, as well as the physiological consequences of postsynaptic receptor activation. Paper discussions, which make up ~ 2/3 of the course, are centered on two major topics: 1) The molecular machinery controlling synaptic vesicle exocytosis and recycling, and 2) Synaptic plasticity covering LTP, LTD, Metaplasticity, Spike-timing dependent plasticity and Homeostatic plasticity. There is significant emphasis on the connections between the various forms of synaptic modification and behavior.
Instructor(s): D. McGehee Terms Offered: Winter
Prerequisite(s): Upper undergrads by consent of instructor
Equivalent Course(s): NSCI 23400

NURB 32900. Perspectives in Drug Abuse. 100 Units.
It is a broad overview course about drug abuse, that is appropriate for graduate students as well as undergraduates. It includes lectures on epidemiology, genetics, neurobiology, experimental methods, policy and treatment, as well as lectures on several specific drug classes. Lectures are by Dr. de Wit and by other invited faculty members, and students are required to present and discuss recent published papers during classes.
Instructor(s): H. de Wit Terms Offered: Spring
Equivalent Course(s): NSCI 21800, BIOS 24135

NURB 33400. Genetic Approaches in Neurobiology. 100 Units.
This course is more technique oriented. The goal is to give a good coverage of different genetic approaches as well as different aspects of neurobiology. Topics are organized by genetic approaches as the following: 1) Transgenic. 2) Gene targeting. 3) Gene replacement. 4) Conditional knockout. 5) Genetic and optical control of neural activity. 6) Transgenic facilitated imaging. 7) Forward genetics and genetic screening. The selection of a variety of papers throughout the course aims to cover different neural pathways, neurotransmitters, receptor/channel types, signaling pathways, and functional implications (learning, memory, addiction, development etc). Specific emphasis will be on the integration of molecular, cellular and systems level approaches in understanding behavior. Lecture time will be devoted to the genetic approaches. Students will present and discuss papers. We will have 2-3 papers each lecture.
Instructor(s): X. Zhuang Terms Offered: Spring

NURB 33500. Protein Structure and Functions in Medicine. 100 Units.
This course explores how molecular machinery works in the context of medicine (vision, fight or flight, cancer, and action of drugs). We first explore the physical and biochemical properties of proteins in the context of cellular signaling. We then examine how proteins and other cellular components make up the signal transduction pathway of humans and conduct their biological functions. The course engages students to strengthen their scientific communication and teaching skills via the in-class podcast, oral examinations, computer-aided structural presentations, student lectures, and discussions.
Instructor(s): W-J. Tang Terms Offered: Spring
Prerequisite(s): Three quarters of a Biological Sciences Fundamentals sequence. Biochemistry strongly recommended.
Equivalent Course(s): BIOS 21349, CABI 31900

NURB 34133. Neuroscience of Seeing. 100 Units.
This course focuses on the neural basis of vision, in the context of the following two questions: 1. How does the brain transform visual stimuli into neuronal responses? 2. How does the brain use visual information to guide behavior? The course covers signal transformation throughout the visual pathway, from retina to thalamus to cortex, and includes biophysical, anatomical, and computational studies of the visual system, psychophysics, and quantitative models of visual processing. This course is designed as an advanced neuroscience course for undergraduate and graduate students. The students are expected to have a general background in neurophysiology and neuroanatomy.
Instructor(s): W. Wei, J. Maunsell, M. Sherman, S. Shevell Terms Offered: Autumn
Prerequisite(s): NSCI 20111 or BIOS 24110 or consent of instructor
Equivalent Course(s): PSYC 24133, PSYC 34133, NSCI 22400, CPNS 34133, BIOS 24133
NURB 34600. Neurobiology of Disease I. 100 Units.
This graduate-level, 100-unit course has an unusual format aimed at fostering lively discussion and interaction. There will be 10 meetings spread at 1-month intervals over the winter, spring and fall quarters. Each meeting will focus on a topic such as Epilepsy, Alzheimer’s, or Autism, and feature a brief introduction (by a student) and chalk talks by two faculty, one on clinical aspects of the disease and one on basic research approaches. The student’s grade is based on the presentation at one meeting and participation across all meetings.
Instructor(s): C. Gomez, X. Zhuang Terms Offered: Autumn Spring Winter
Note(s): Class meets on the 3rd Wednesday of the month; 100 credits given after 3 quarters attendance.
Equivalent Course(s): CPNS 34600

NURB 34800. Neurons and Glia: Advanced Cellular and Molecular Topics. 100 Units.
This is not a survey course and will provide in-depth analysis of topics in the areas of molecular and cell biology of the nervous system selected by the faculty. The topics to be covered this year are: 1) structure and function of neuronal proteins 2) cell biology of neurons and synapses, 3) neurochemistry and metabolism of neurons, and 4) cell biology of glia. Each topic will be covered as a unit that will start with the main techniques used in that area of research followed by central concepts. Each week will usually consist of two faculty lectures where key papers on that specific topic are assigned and analyzed. In the third session, there will be assigned papers on specific topics from the faculty lectures that will be presented and discussions led by the students.
Instructor(s): W. Green; R. Carrillo Terms Offered: Winter
Prerequisite(s): Required: NSCI 20111, NSCI 20121, NSCI 20130 or consent of Instructor Recommended: BIOS 20200
Equivalent Course(s): BIOS 24141, NSCI 23800

NURB 38800. Neuroscience Ethics. 100 Units.
Neuroscience Senior Ethics class: compulsory for Neurobiology and Computational Neuroscience PhD students in their 4th year (to fulfill BSD ethics requirement). The course, directed by the graduate programs chairs, will consist of 4 sessions with invited speakers to be held in May and June.
Instructor(s): D. McGehee Terms Offered: Winter
Equivalent Course(s): CPNS 38800

NURB 39900. Readings: Neurobiology. 300.00 Units.
Subject matter for individual tutorial-based study is selected through prior consultation and is given under the guidance of a faculty member. The student and faculty member must indicate at time of registration whether the course will be taken on a letter grade or pass/fail basis.

NURB 40100. Rsch: Neurobiology. 300.00 Units.
The student conducts original investigation under the direction of a faculty member. The research is presented and defended as a dissertation in candidacy for the degree of Doctor of Philosophy.

NURB 70000. Advanced Study: Neurobiology. 300.00 Units.
Advanced Study: Neurobiology