Committee on Microbiology

Chair
- Glenn Randall, Microbiology

Professors
- Eugene B. Chang, Medicine
- Alexander Chervonsky, Pathology
- Laurie Comstock, Microbiology
- Tatyana Golovkina, Microbiology
- Jean Greenberg, Molecular Genetics & Cell Biology
- Joseph Kanabrocki, Microbiology
- Shabaana Khader, Microbiology
- Dominique Missiakas, Microbiology
- Eric Pamer, Medicine
- Tao Pan, Biochemistry & Molecular Biology
- Glenn Randall, Microbiology
- Phoebe Rice, Biochemistry & Molecular Biology
- Raymond Roos, Neurology
- Lucia Rothman-Denes, Molecular Genetics & Cell Biology
- Michael Rust, Molecular Genetics & Cell Biology
- Wei Jen Tang, Ben May Department for Cancer Research
- Savas Tay, Pritzker School of Molecular Engineering
- Aaron Turkewitz, Molecular Genetics & Cell Biology

Associate Professors
- Maureen Coleman, Geophysical Sciences
- Jacob Waldbauer, Geophysical Sciences

Assistant Professors
- Jueqi Chen, Microbiology
- Daria Esterhazy, Pathology
- Sam Light, Microbiology
- Mark Mimee, Microbiology
- Arjun Raman, Pathology

Emeritus Faculty
- Robert Haselkorn, Molecular Genetics & Cell Biology
- Bernard Roizman, Microbiology
- Howard Shuman, Microbiology

The primary purpose of the Committee on Microbiology is to produce research scientists and teachers in microbiology by offering formal instruction; by fostering informal dissemination of information among the faculty, fellows and students engaged in research in microbiology; and by administering a program of study leading to the degree of Doctor of Philosophy. Through its faculty, activities and educational program, the Committee on Microbiology integrates studies in various clinical and non-clinical departments of the Biological Sciences Division. The Committee on Microbiology maintains maximum flexibility in its program to cater to students' developing interests. Students with backgrounds in any appropriate field (physics, chemistry, biology, biochemistry, and medicine) may commence work in microbiology upon entering the graduate program of the Biological Sciences Division. The Committee on Microbiology sponsors a seminar series, which brings to campus prominent microbiologists from all over the world to discuss their research and meet with microbiology faculty and students. Another regular activity sponsored by the committee is the Microbiology Research Forum. Research Forums feature a current graduate student, postdoctoral fellow or other training fellow in microbiology presenting his/her research data. Microbiology Research Forums are open to the university community, offering an informal forum for the discussion of microbiology within the Chicago scientific community.

The Committee on Microbiology is a member of the Biomedical Sciences Cluster, which also houses graduate programs of the Committee on Cancer Biology, the Committee on Immunology, and the Committee on Molecular Metabolism and Nutrition. The four academic units share several courses, a seminar series and other
events for students and faculty within the cluster. The goal of the cluster system is to encourage interdisciplinary interactions among both trainees and faculty, and to allow students flexibility in designing their particular course of study. The Ph.D. degree is administered by the Committee on Microbiology and is recommended when the student has fulfilled the requirements stipulated in his or her individual program; has met the divisional requirements for the degree; and, in the opinion of the committee, has attained competence in research in his or her field of specialization.

MICROBIOLOGY COURSES

MICR 30600. Fundamentals of Bacterial Physiology. 100 Units.
This course meets one of the requirements of the microbiology specialization. This course introduces bacterial diversity, physiology, ultra-structure, envelope assembly, metabolism, and genetics. In the discussion section, students review recent original experimental work in the field of bacterial physiology.
Equivalent Course(s): BIOS 25206

MICR 31100. Ethics in Scientific Research. 50 Units.
TBD
Equivalent Course(s): MPMM 31100, CABI 31100, IMMU 31100, MOMN 31100

MICR 31200. Host Pathogen Interactions. 100 Units.
This course explores the basic principles of host defense against pathogens, including evolutionary aspects of innate and adaptive immunity and immune evasion strategies. Specific examples of viral and bacterial interactions with their hosts are studied in depth. A review of immunological mechanisms involved in specific cases is incorporated in the course.
Equivalent Course(s): BIOS 25260, IMMU 31200

MICR 31600. Molecular Basis of Bacterial Disease. 100 Units.
This course meets one of the requirements of the microbiology specialization. This lecture/discussion course involves a comprehensive analysis of bacterial pathogens, the diseases that they cause, and the molecular mechanisms involved during pathogenesis. Students discuss recent original experimental work in the field of bacterial pathogenesis.
Equivalent Course(s): BIOS 25216

MICR 33000. Bacteria/Bacteriophage Genetics and Cell Biology. 100 Units.
This graduate-level course is focused on providing students with a) an understanding of the foundational principles of bacterial genetics, and methods of genetic analysis, and b) how expression of genetic material is regulated in bacteria and phage, and c) mechanisms that govern the construction, development, and division of bacterial cells and multicellular communities.

MICR 34000. Bacterial Pathogenesis. 100 Units.
Bacterial pathogens of human, animal and plant organisms, their infectious strategies and molecular mechanisms of causing disease.

MICR 34101. Molecular Genetics and Cell Biology of Prokaryotes. 100 Units.
Prokaryotic life is extremely diverse and distinguished by unique molecular and genetic properties. This graduate-level course will explore the molecular basis of prokaryotic life in a hybrid lecture/discussion-based format. Students will be expected to read and discuss primary scientific papers that provide historical and functional insight into fundamental features of prokaryotic cell biology, metabolism and physiology.

MICR 34600. Introduction to Virology. 100 Units.
This class on animal viruses considers the major families of the viral kingdom with an emphasis on the molecular aspects of genome expression and virus-host interactions. Our goal is to provide students with solid appreciation of basic knowledge, as well as instruction on the frontiers of virus research.
Equivalent Course(s): BIOS 25287

MICR 35000. Advanced Virology. 100 Units.
Advanced Virology reviews various questions related to virus-host interactions. We cover how viruses are detected and controlled by the innate and adaptive immune systems and what mechanisms have they evolved to counteract the host protective responses. We will exemplify these mechanisms using viruses from such families as Orthomyxoviruses, Paramyxoviruses, Retroviruses and Herpesviruses.

MICR 35910. PE: Medical Microbiology. 75-150 Units.
TBA

MICR 38000. Fundamentals and Applications of the Human Microbiota. 100 Units.
Thousands of microbes colonize the human body to collectively establish the human microbiota. Research findings over the past two decades have led to a growing appreciation of the importance of the microbiota in various facets of human health. This course will explore the human microbiota through a critical review of the primary scientific literature. The first portion of the course will cover distinct ways by which the human microbiota impacts mammalian health. The second part of the course will focus on established and developing microbiota-targeting biotechnologies. Students will leave the course with a general understanding of the current state of human microbiota research and its therapeutic and diagnostic applications.
Equivalent Course(s): MENG 23210, MENG 33210, BIOS 25207
MICR 39000. Introduction to Experimental Microbiology. 100 Units.
The Committee on Microbiology will host a seminar series comprised of seven to ten presentations by faculty
invited from other institutions. A reading and discussion session will accompany the seminar series. In the
session, which meets for one hour on a day preceding each week's seminar, first year graduate students will
discuss with their peers and a Microbiology faculty member three original research papers of the invited speaker.
Following the seminar and the conventional question and answer period, first year graduate students of the
Committee on Microbiology are invited to question the speaker on her or his research and to discuss their
own research for a period of 1 hour. In this manner, we will provide students with an intellectual environment
that reveals the discovery process and research frontiers in various laboratories and fields. First year graduate
students are required to register for the course.

MICR 39200. Tutorial: Microbiology. 100 Units.
Additional readings in an area of Microbiology. Must be prearranged with a faculty member and preapproved by
the chair of the Curriculum Committee.

MICR 39500. UChicago Microscopy Course. 100 Units.
The UChicago Microscopy Course is a residential research course hosted at the Marine Biological Laboratory
in Woods Hole, MA. The course is designed for graduate students in year two or beyond. Travel and lodging
costs will be covered in full. This intensive two-week boot camp course will teach both conceptual foundations
and practical approaches to modern light microscopy, using a variety of microscopes and specimens. The central
goal is to empower students to identify and master imaging strategies that are best suited to address their
specific experimental problems of interest, now and in the future. Core topics will include: (a) fundamentals
of microscope design, image formation, contrast, and resolution; (b) common approaches to transmitted light
(e.g. phase contrast, DIC, and polarization) and fluorescence microscopy (e.g. laser scanning or spinning disk
diffraction, light sheet and TIRF), (c) fluorescent probes and multispectral imaging; and (d) cameras and detectors,
signal: noise and strategies for optimal sampling in space and time. More advanced topics will include single-
molecule approaches, super-resolution, and photokinetics (e.g. FRAP, photoactivation, and optogenetics). In the
first half of the course, daily lectures will introduce basic concepts, followed by intensive hands-on experience
with different specimens, microscopes, and imaging modalities. In the second half, students will explore more
advanced topics of interest through a set of modular projects. Equivalent Course(s): DVBI 39500, BCMB 39500, MGCB 39500

MICR 39900. Readings: Microbiology. 100 Units.
Reading course in an area of Microbiology of special interest to the student. Must be prearranged with a faculty
member and preapproved by the chair of the Curriculum Committee.

MICR 40000. Microbiology Research Forum. 100 Units.
All graduate students and honors undergraduate students of the Committee on Microbiology will present their
research in a central forum, the data club, once each year. Students and postdoctoral fellows present their recent
research data for critical evaluation by the faculty of the Committee on Microbiology. This course provides a
forum to ensure continued progress of graduate students in their thesis projects. First year graduate students are
required to register for the course.

MICR 47000. Thesis Research: Microbiology. 300.00 Units.
Laboratory research for senior graduate students.

MICR 47100. Non-Thesis Rsch: Microbiology. 300.00 Units.
Non-Thesis Research refers to laboratory rotations. The purpose of laboratory rotations is to expose the student
to different research environments, to broaden his or her acquaintance with useful laboratory techniques, and to
introduce him or her to the conceptual framework of experimental design. Students undertake short, ten-week
research projects in at least two different laboratories before beginning their dissertation research.

MICR 70000. Advanced Study: Microbiology. 300.00 Units.
Advanced Study: Microbiology