Committee on Genetics, Genomics, and Systems Biology

Chair
• Marcelo Nobrega

Professors
• Erin Adams, Biochemistry and Molecular Biology
• Graeme Bell, Medicine, Endocrinology
• Joy Bergelson, Ecology & Evolution
• Douglas K. Bishop, Radiation & Cellular Oncology
• Anna DiRienzo, Human Genetics
• M. Eileen Dolan, Medicine, Hematology/Oncology
• Wei Du, Ben May Department for Cancer Research
• Richard Fehon, Molecular Genetics & Cell Biology
• Edwin L. Ferguson, Molecular Genetics & Cell Biology
• Yoav Gilad, Human Genetics
• T. Conrad Gilliam, Human Genetics
• Benjamin Glick, Molecular Genetics & Cell Biology
• Michael Glotzer, Molecular Genetics & Cell Biology
• Christopher Gomez, Neurology
• Jean Greenberg, Molecular Genetics & Cell Biology
• Robert Grossman, Medicine, Computational Biomedicine and Biomedical Data Science
• Chuan He, Chemistry
• Barbara Kee, Pathology
• Martin Kreitman, Ecology & Evolution
• Stephen J. Kron, Molecular Genetics & Cell Biology
• Bruce T. Lahn, Human Genetics
• Manyuan Long, Ecology & Evolution
• Mary Sara McPeek, Statistics
• Marcelo Nobrega, Human Genetics
• John Novembre, Human Genetics
• Carole Ober, Human Genetics
• Olufunmilayo Olopade, Medicine, Hematology/Oncology
• Rama Ranganathan, Biochemistry & Molecular Biology
• Ilaria Rebay, Ben May Department for Cancer Research
• John Reinitz, Statistics
• Marsha Rosner, Ben May Department for Cancer Research
• Lucia Rothman-Denes, Molecular Genetics & Cell Biology
• Michael Rust, Molecular Genetics & Cell Biology
• Andrey Rzhetsky, Medicine, Computational Biomedicine and Biomedical Data Science
• Urs Schmidt-Ott, Organismal Biology & Anatomy
• Neil H. Shubin, Organismal Biology & Anatomy
• Jonathan P. Staley, Molecular Genetics & Cell Biology
• Matthew Stephens, Human Genetics
• Francois Spitz, Human Genetics
• Joseph W. Thornton, Ecology & Evolution
• Aaron Turkewitz, Molecular Genetics & Cell Biology
• Xiaoxi Zhuang, Neurobiology
• Yingming Zhao, Ben May Department for Cancer Research

Associate Professors
The Committee on Genetics, Genomics & Systems Biology (GGSB) is an interdisciplinary PhD granting program that brings together over 60 training faculty representing numerous departments at the University of Chicago. The GGSB program is aimed at training PhD scholars for careers as independent scientists in basic and applied biomedical research and education, leading to Doctor of Philosophy in Genetics. Our PhD training program combines a foundation in modern genetic analysis with training in current methods for formulating and addressing biological questions in the context of complex systems. The presence of both basic and clinical sciences in the Division of Biological Sciences enhances the Committee’s broad interdisciplinary approach to teaching and research. GGSB provides an exciting environment to pursue rigorous, high quality training with flexibility in designing programs to meet individual needs. GGSB’s goal is to provide an intellectually stimulating, collegial, and supportive environment for students to progress smoothly from research training to careers as independent scientists.

Curriculum and Timeline - First Year (https://ggsb.uchicago.edu/page/curriculum-timeline-first-year/)

Formal Coursework: Choice of Two GGSB Tracks: Empirical Track (https://ggsb.uchicago.edu/page/ggsb-empirical-track-coursework/) or Computational Track (https://ggsb.uchicago.edu/page/ggsb-computational-track-coursework/)

To obtain a Ph.D. in the Division of Biological Sciences, nine graded courses are required as detailed below.

GGSB has two tracks, 1) “Empirical Track” and 2) “Computational Track”. While the two tracks are united by the common goals of using genetic, genomic, and systems
Committee on Genetics, Genomics, and Systems Biology

biology approaches to address important biological questions, the training focuses are different. Training in the “Empirical Track (https://ggsb.uchicago.edu/page/ggsb-empirical-track-coursework/”) is emphasizes experimental techniques, especially those quantitative in nature, while the “Computational Track (https://ggsb.uchicago.edu/page/ggsb-computational-track-coursework/)” trains students in building computational skills.

Training under the Empirical Track is focused on experimental techniques.

There are five suggested specializations to choose from for students interested in concentrating in the Empirical Track: 1) Model Systems, 2) Population Genetics, 3) Human Genetics, 4) Developmental Genetics, and 5) Genomics & Systems Biology. These five course tracks are suggestions. GGSB encourages students to explore other areas of interest as well.

For the Empirical Track, four [4] required courses and four [4] graded electives must be taken, one of which may be a reading course. The electives can be selected according to the student's interests and the availability of courses.

Four Required Courses:
- Genetic Analysis of Model Organisms AND Genomics and Systems Biology
- Plus One of the Following Two Courses: Molecular Biology I OR Molecular Biology II
- Plus One of the Following Four Courses: Fundamentals of Molecular Evolution OR Principles of Population Genetics I OR Evolutionary Genomics OR Human Variation & Disease

Computational, mathematical, and statistical tools are essential to research in the biological sciences. The University of Chicago has had a long tradition of excellence in these areas, and to continue that tradition, GGSB has developed a focused curriculum to train students in these areas.

There are four suggested specializations for this track: 1) Population Genetics & Evolution, 2) Statistical Genetics, 3) Computational Genomics, and 4) Computational Cell Biology. GGSB encourages students to explore other areas of interest as well.

The Computational track curriculum trains students to address fundamental biological questions and to master the three skillsets that are essential to computational genomics research: probabilistic modeling, statistical inference, and computational algorithms & data structures. This curriculum is also unique in its focus on communication skills, both in terms of writing and speaking. This emphasis emerges from a perspective that computational biologists need to clearly explain complex algorithms and results in order to both effectively share their research products and to collaborate with diversely trained colleagues.

For additional information please click here to view the Doctoral Training in Computational Genomics (http://compbio.uchicago.edu/) website.

AND Three [3] Core Elective Courses Chosen from the Following List: Human Genetics I OR Genetic Analysis of Model Organisms OR Introductory Statistical Genetics OR Principles of Population Genetics I OR Evolution of Biological Molecules OR Biophysics of Biomolecules OR Human Variation and Disease OR Genomics and Systems Biology OR Quantitative Analysis of Biological Dynamics

ROTATIONS

Students undertake short research projects in at least two different laboratories before beginning their dissertation research. The purpose of the rotation is to expose the student to different research environments, broaden his/her acquaintance with useful laboratory techniques, and introduce him/her to the conceptual framework of experimental design. The distribution of course offerings makes it difficult for students to undertake rotations in Autumn Quarter of the first academic year. Therefore, rotations are performed in the winter or spring and summer quarters. The winter and spring rotations last 10 weeks to coincide with the
academic quarter. The summer rotation lasts 5 weeks, when the student is able to devote full-time to research. Students wishing to do a third rotation may do so during the second half of Summer Quarter.

APPLICATION

For information about applying to our graduate program, please visit [this link](https://apply-bsd.uchicago.edu/apply/).

At the beginning of the second year of training, students choose a research advisor. Most of the second year is spent developing a research project. A Thesis Advisory Committee is chosen by the student in consultation with his/her mentor and the GGSB Student Advisory Committee. A written research proposal is provided to the Thesis Advisory Committee in advance of the first committee meeting. During this meeting, the student will present and defend his/her proposal. This first meeting constitutes the Qualifying Exam for Ph.D. candidacy. Following Qualifying Exam, the Thesis Advisory Committee meets with, and advises the student on a regular basis throughout the remainder of his/her training.

CURRICULUM AND TIMELINE - ADVANCED YEARS (https://ggsb.uchicago.edu/page/curriculum-timeline-advanced-years/)

After passing the Qualifying Exam and throughout the duration of their studies, students conduct full-time thesis research while continuing to attend seminars, journal clubs, and other educational meetings. Students are welcome to audit courses in which they have an interest. Finally, each graduating student writes a dissertation culminating in a public Thesis Defense.

APPLICATION

For information about applying to our graduate program, please visit [this link](https://apply-bsd.uchicago.edu/apply/).

GENETICS COURSES

GENE 31800. Current Topics in Genetics. 50 Units.
This course will expose student to current research topics in genetics for the bi-monthly GGSB Invited Seminar Series. This is a required ½ credit course for all GGSB students and will be graded Pass/Fail. Winter, Spring

GENE 31900. Introduction to Research. 100 Units.
Lectures on current research by departmental faculty and other invited speakers. A required course for all first-year graduate students.
Instructor(s): Staff Terms Offered: Autumn, Winter
Equivalent Course(s): MGCB 31900, HGEN 31900, DVBI 31900, BCMB 31900

GENE 35400. Advanced Developmental Biology. 100 Units.
This course provides both an overview of developmental biology and an in-depth coverage of selected topics, emphasizing the origins of classical concepts in the field as well as modern molecular and genetic approaches to the study of developmental processes. Subjects include cell fate determination, growth control, stem cells, signal transduction, neurogenesis, and cell polarity in developing systems. Underlying mechanisms are illuminated through discussion of key experiments. Discussion sections cover selected papers from the developmental biology literature, with emphasis on critical evaluation of experimental evidence.
Instructor(s): "E. Ferguson, R. Fehon" Terms Offered: Winter
Prerequisite(s): "BIOS 20182, 20192, or 20235"
Equivalent Course(s): BIOS 21227

GENE 39900. Readings: Genetics. 300.00 Units.
A course designed by a student and faculty member. All reading courses must be approved by the Curriculum/Student Affairs Committee prior to registration.
Terms Offered: Summer, Autumn, Winter, Spring

GENE 40100. Thesis Research: Genetics. 300.00 Units.
Thesis Research: Genetics
Instructor(s): Gilad Terms Offered: Summer, Autumn, Winter, Spring

GENE 40200. Non-Thesis Research: Genetics. 300.00 Units.
Non-Thesis Research: Genetics
Instructor(s): Gilad Terms Offered: Summer, Autumn, Winter, Spring