Committee on Development, Regeneration, and Stem Cell Biology

Chair
 • Urs Schmidt-Ott

Professors
 • John Cunningham, Pediatrics
 • Wei Du, Ben May Department for Cancer Research
 • Richard Fehon, Molecular Genetics & Cell Biology
 • Edwin Ferguson, Molecular Genetics & Cell Biology
 • Yoav Gilad, Human Genetics
 • Michael Glotzer, Molecular Genetics & Cell Biology
 • William Green, Neurobiology
 • Elizabeth Grove, Neurobiology
 • Robert Ho, Organismal Biology & Anatomy
 • David Kovar, Molecular Genetics & Cell Biology
 • Bruce Lahn, Human Genetics
 • Ivan Moskowitz, Pediatrics
 • Victoria Prince, Organismal Biology & Anatomy
 • Clifton Ragsdale, Neurobiology
 • Ilaria Rebay, Ben May Department for Cancer Research
 • Nancy Schwartz, Pediatrics
 • Neil Shubin, Organismal Biology & Anatomy

Associate Professors
 • Jill de Jong, Pediatrics
 • Sally Horne-Badovinac, Molecular Genetics & Cell Biology
 • Barbara Kee, Pathology
 • Jocelyn Malamy, Molecular Genetics & Cell Biology
 • Ed Munro, Molecular Genetics & Cell Biology
 • Urs Schmidt-Ott, Organismal Biology & Anatomy
 • Xiaoyang Wu, Ben May Department for Cancer Research

Assistant Professors
 • Ellie Heckscher, Molecular Genetics & Cell Biology
 • Paschalis Kratsios, Neurobiology
 • Timothy Sanders, Pediatrics
 • Xiaochang Zhang, Human Genetics

Emeritus Faculty
 • Martin Gross, Pathology
 • Robert Haselkorn, Molecular Genetics & Cell Biology
 • Anthony Mahowald, Molecular Genetics & Cell Biology
 • Manfred Ruudat, Ecology & Evolution

Program of Study

First Year
The first year of graduate study is spent in coursework, independent reading, and exploratory research. Three courses constitute a full schedule for each quarter of the first year; the schedule typically includes three lecture courses or two lecture courses and a research rotation. Students are required to undertake laboratory rotations in at least three different laboratories before beginning their dissertation research. These rotations are performed during the first academic year, one each quarter. Rotations can also be performed during Summer Quarter.
Seminars given by invited speakers are regularly offered and students are strongly urged to attend. A separate series of meetings is presented in the Autumn and Winter quarters by faculty to introduce students to their research.

At the end of June, students take the Preliminary Examination as a first step towards candidacy for the Ph.D. The exam consists of the preparation of a written research proposal in the field of developmental biology and an oral defense of that proposal.

SECOND YEAR

Coursework will continue during the second year as needed to fulfill the requirements. Students choose research advisors by July 1 of the Summer Quarter after the first year, and begin developing a research project. By early Autumn Quarter, each student assembles a thesis committee. The student then prepares a written proposal for dissertation research and defends this proposal before the doctoral committee. This defense constitutes Part II of the candidacy examination. This examination must be completed by the end of Autumn Quarter of the second academic year.

ADVANCED YEARS

After the qualifying exam, the student works full time on thesis research, although the faculty urges students to continue to take advantage of the advanced courses and seminars that are offered. Finally, each graduating student writes a dissertation describing his or her research, presents the work in a public seminar, and defends it before their doctoral committee.

EVALUATION

Throughout their term as graduate students, students are expected to have frequent informal conversations with professors in their courses, their research advisor, and members of their doctoral committees. In this way, students can obtain frequent appraisals of their progress and constructive advice.

Formal evaluation of each student's progress continues every academic year. In the first year and a half, the evaluation is based on the student's performance in courses, laboratory rotations, the preliminary examination, and the qualifying examination. In later years, the research advisor and doctoral committee oversee the student's dissertation research progress; a report is submitted after the yearly meeting that becomes part of the student's permanent file. If there are any deficiencies in performance, the student will receive a letter describing these deficiencies and making suggestions about how to remedy them.

ADMISSIONS

For information about applying to our graduate program, please visit our website at http://molbio.bsd.uchicago.edu.

REQUIREMENTS FOR THE PH.D. DEGREE

A Ph.D. candidate must fulfill certain formal coursework requirements, pass the preliminary and qualifying examinations, and present a satisfactory dissertation describing the results of original research.

The committee expects a knowledge of and proficiency in contemporary developmental biology as well as auxiliary fields of molecular biology, cell biology, and genetics. This requirement will normally be met by fulfilling the formal coursework listed below. However, courses taken at other institutions, in other departments, or as part of the medical school curriculum may substitute for required committee courses with the approval of the curriculum committee.

FORMAL COURSE WORK

The Biological Sciences Division requirement of nine graded course units may be met by registering for a combination of formal courses and up to two graded laboratory rotations. During the first year of graduate work students ordinarily complete one course in molecular biology, one in cell biology, one in genetics, and three courses in developmental biology.

DEVELOPMENTAL BIOLOGY COURSES

DVBI 33850. Evolution and Development. 100 Units.
The course will provide a developmental perspective on animal body plans in phylogenetic context. The course will start with a few lectures, accompanied by reading assignments. Students will be required to present a selected research topic that fits the broader goal of the course and will be asked to submit a referenced written version of it after their oral presentation. Grading will be based on their presentation (oral and written) as well as their contributions to class discussions. Prerequisite(s): Advanced undergraduates may enroll with the consent of the instructor.
Instructor(s): U. Schmidt-Ott Terms Offered: Spring
Equivalent Course(s): BIOS 22306, ORGB 33850, EVOL 33850

DVBI 35600. Vertebrate Development. 100 Units.
This advanced-level course combines lectures, student presentations, and discussion sessions. It covers major topics on the developmental biology of embryos (e.g. formation of the germ line, gastrulation, segmentation,
nervous system development, limb patterning, organogenesis). We make extensive use of the primary literature and emphasize experimental approaches including embryology, genetics, and molecular genetics.

Instructor(s): V. Prince, P. Kratsios. Terms Offered: Winter
Prerequisite(s): For Biological Sciences majors: Three quarters of a Biological Sciences Fundamentals Sequence including BIOS 20189 or BIOS 20190
Equivalent Course(s): BIOS 21356, ORGB 33600, MGCB 35600

DVBI 36100. Plant Development and Molecular Genetics. 100 Units.
Genetic approaches to central problems in plant development will be discussed. Emphasis will be placed on embryonic pattern formation, meristem structure and function, reproduction, and the role of hormones and environmental signals in development. Lectures will be drawn from the current literature; experimental approaches (genetic, cell biological, biochemical) used to discern developmental mechanisms will be emphasized. Graduate students will present a research proposal in oral and written form; undergraduate students will present and analyze data from the primary literature, and will be responsible for a final paper.
Instructor(s): J. Greenberg Terms Offered: Spring
Prerequisite(s): For undergraduates only: Three quarters of a Biological Sciences Fundamentals Sequence including BIOS 20187 or BIOS 20235. AND CONSENT OF INSTRUCTOR
Equivalent Course(s): MGCB 36100, BIOS 23299, ECEV 32900

DVBI 36200. Stem Cells and Regeneration. 100 Units.
The course will focus on the basic biology of stem cells and regeneration, highlighting biomedically relevant findings that have the potential to translate to the clinic. We will cover embryonic and induced pluripotent stem cells, as well as adult stem cells from a variety of systems, both invertebrate and vertebrates.
Instructor(s): E. Ferguson, V. Prince, J. Cunningham, H. Marlow Terms Offered: Spring
Prerequisite(s): For undergraduates only: completion of a Biological Sciences Fundamentals Sequence
Equivalent Course(s): BIOS 21416

DVBI 36400. Developmental Mechanisms. 100 Units.
This course provides an overview of the fundamental questions of developmental biology, with particular emphasis on the genetic, molecular and cell biological experiments that have been employed to reach mechanistic answers to these questions. Topics covered will include formation of the primary body axes, the role of local signaling interactions in regulating cell fate and proliferation, the cellular basis of morphogenesis, and stem cells.
Instructor(s): E. Ferguson, R. Fehon Terms Offered: Winter
Prerequisite(s): For undergraduates only: Three quarters of a Biological Sciences Fundamentals Sequence including BIOS 20189, BIOS 20190, or BIOS 20235. AND CONSENT OF INSTRUCTOR
Equivalent Course(s): BIOS 21237, MGCB 36400

DVBI 32000. Quantitative Analysis of Biological Dynamics. 100 Units.
The basic focus of the course will be quantitative approaches to understanding organization and dynamics at the molecular, subcellular and cellular levels, and will rest on three pillars - modern imaging and image analysis, quantitative analysis and presentation of data, mathematical modeling and computer simulations.
Instructor(s): Edwin Munro; Michael Rust Terms Offered: Spring
Equivalent Course(s): MGCB 32000

DVBI 32550. Quantitative Analysis of Biological Dynamics II. 100 Units.
This is a workshop style course in which students will work closely with instructors and TAs to implement mathematical/computational approaches to address specific research problems of interest to individual students. The course is open to all students who have taken MGCB/DRSB 32000 or its equivalent, or who have otherwise acquired a basic working knowledge of one or more programming languages (e.g. R, Matlab, Python). The course will function as follows: prior to enrollment, each interested student will meet with the course instructors to discuss an open scientific question they wish to address using mathematical/computational approaches. The course will begin with a short presentation from each student describing the problem they propose to study, followed by a discussion with the rest of the students and the course instructors about possible approaches. The course instructors and TAs will then meet one-on-one with students over the course of the quarter to help students implement the proposed strategies and adapt to challenges that emerge through this process. Students will reconvene weekly as a group to report on their progress and discuss alternative approaches.
Instructor(s): E. Munro, M. Rust Terms Offered: Spring. Offered in alternating years beginning Spring 2020.
Prerequisite(s): MGCB 32000, DVBI 32000
Equivalent Course(s): MGCB 32500

DISTRIBUTION COURSES

DVBI 31200. Molecular Biology I. 100 Units.
Nucleic acid structure and DNA topology; methodology; nucleic-acid protein interactions; mechanisms and regulation of transcription in eubacteria, and of replication in eubacteria and eukaryotes; mechanisms of genome and plasmid segregation in eubacteria.
Instructor(s): L. Rothman-Denes Terms Offered: Winter
Equivalent Course(s): MGCB 31200, BCMB 31200
DVBI 31300. Molecular Biology-II. 100 Units.
The content of this course covers the mechanisms and regulation of eukaryotic gene expression at the transcriptional and post-transcriptional levels. Our goal is to explore research frontiers and evolving methodologies. Rather than focusing on the elemental aspects of a topic, the lectures and discussions highlight the most significant recent developments, their implications and future directions.
Instructor(s): J. Staley, A. Ruthenburg, H.C. Lee Terms Offered: Spring
Prerequisite(s): Molecular Biology I (MGCB 31200) or by special permission of an instructor
Equivalent Course(s): BCMB 31300, MGCB 31300

DVBI 31400. Genetic Analysis of Model Organisms. 100 Units.
Fundamental principles of genetics discussed in the context of current approaches to mapping and functional characterization of genes. The relative strengths and weaknesses of leading model organisms are emphasized via problem-solving and critical reading of original literature.
Equivalent Course(s): MGCB 31400, BCMB 31400, HGEN 31400

DVBI 31600. Cell Biology I. 100 Units.
Eukaryotic protein traffic and related topics, including molecular motors and cytoskeletal dynamics, organelle architecture and biogenesis, protein translocation and sorting, compartmentalization in the secretory pathway, endocytosis and exocytosis, and mechanisms and regulation of membrane fusion.
Instructor(s): A. Turkewitz, B. Glick Terms Offered: Autumn
Equivalent Course(s): MGCB 31600, HGEN 31600, BCMB 31600

DVBI 31700. Cell Biology II. 100 Units.
This course covers the mechanisms with which cells execute fundamental behaviors. Topics include signal transduction, cell cycle progression, cell growth, cell death, cancer biology, cytoskeletal polymers and motors, cell motility, cytoskeletal diseases, and cell polarity. Each lecture will conclude with a dissection of primary literature with input from the students. Students will write and present a short research proposal, providing excellent preparation for preliminary exams.
Instructor(s): M. Glotzer, D. Kovar Terms Offered: Winter
Prerequisite(s): For undergraduates: Three quarters of a Biological Sciences Fundamentals Sequence.
Equivalent Course(s): BIOS 21238, BCMB 31700, MGCB 31700